
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1093477/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gas hydrate destabilization: enhanced dewatering, benthic material turnover and large methane plumes at the Cascadia convergent margin. Earth and Planetary Science Letters, 1999, 170, 1-15.	4.4	386
2	Authigenic carbonates from the Cascadia subduction zone and their relation to gas hydrate stability. Geology, 1998, 26, 647.	4.4	376
3	Barite fronts in continental margin sediments: a new look at barium remobilization in the zone of sulfate reduction and formation of heavy barites in diagenetic fronts. Chemical Geology, 1996, 127, 125-139.	3.3	366
4	Fluid and chemical fluxes in and out of sediments hosting methane hydrate deposits on Hydrate Ridge, OR, I: Hydrological provinces. Earth and Planetary Science Letters, 2002, 201, 525-540.	4.4	288
5	Three-dimensional distribution of gas hydrate beneath southern Hydrate Ridge: constraints from ODP Leg 204. Earth and Planetary Science Letters, 2004, 222, 845-862.	4.4	278
6	Gas hydrate growth, methane transport, and chloride enrichment at the southern summit of Hydrate Ridge, Cascadia margin off Oregon. Earth and Planetary Science Letters, 2004, 226, 225-241.	4.4	264
7	Methane Hydrates in Nature—Current Knowledge and Challenges. Journal of Chemical & Engineering Data, 2015, 60, 319-329.	1.9	226
8	Fluid and chemical flux in and out of sediments hosting methane hydrate deposits on Hydrate Ridge, OR, II: Hydrological processes. Earth and Planetary Science Letters, 2002, 201, 541-557.	4.4	186
9	Co-existence of gas hydrate, free gas, and brine within the regional gas hydrate stability zone at Hydrate Ridge (Oregon margin): evidence from prolonged degassing of a pressurized core. Earth and Planetary Science Letters, 2004, 222, 829-843.	4.4	173
10	Methane hydrate formation in turbidite sediments of northern Cascadia, IODP Expedition 311. Earth and Planetary Science Letters, 2008, 271, 170-180.	4.4	161
11	The stable carbon isotope biogeochemistry of acetate and other dissolved carbon species in deep subseafloor sediments at the northern Cascadia Margin. Geochimica Et Cosmochimica Acta, 2009, 73, 3323-3336.	3.9	161
12	Measurements of transience and downward fluid flow near episodic methane gas vents, Hydrate Ridge, Cascadia. Geology, 1999, 27, 1075.	4.4	152
13	Feeding methane vents and gas hydrate deposits at south Hydrate Ridge. Geophysical Research Letters, 2004, 31, .	4.0	146
14	Bromine and iodine in Peru margin sediments and pore fluids: Implications for fluid origins. Geochimica Et Cosmochimica Acta, 1993, 57, 4377-4389.	3.9	141
15	Formation of modern and Paleozoic stratiform barite at cold methane seeps on continental margins. Geology, 2003, 31, 897.	4.4	135
16	The effect of diagenesis and fluid migration on rare earth element distribution in pore fluids of the northern Cascadia accretionary margin. Chemical Geology, 2012, 291, 152-165.	3.3	129
17	Gas hydrate occurrence from pore water chlorinity and downhole logs in a transect across the northern Cascadia margin (Integrated Ocean Drilling Program Expedition 311). Journal of Geophysical Research, 2008, 113, .	3.3	118
18	Gas Hydrates in Marine Sediments: Lessons from Scientific Ocean Drilling. Oceanography, 2006, 19, 124-142.	1.0	113

#	Article	IF	CITATIONS
19	Temporal and spatial evolution of a gas hydrate–bearing accretionary ridge on the Oregon continental margin. Geology, 1999, 27, 939.	4.4	111
20	Widespread methane seepage along the continental margin off Svalbard - from BjÃ,rnÃ,ya to Kongsfjorden. Scientific Reports, 2017, 7, 42997.	3.3	100
21	Authigenic barites and fluxes of barium associated with fluid seeps in the Peru subduction zone. Earth and Planetary Science Letters, 1996, 144, 469-481.	4.4	97
22	Gas hydrate dissociation off Svalbard induced by isostatic rebound rather than global warming. Nature Communications, 2018, 9, 83.	12.8	97
23	Precise δ ¹³ C analysis of dissolved inorganic carbon in natural waters using automated headspace sampling and continuousâ€flow mass spectrometry Limnology and Oceanography: Methods, 2005, 3, 349-360.	2.0	94
24	Physical properties of sediment from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope. Marine and Petroleum Geology, 2011, 28, 361-380.	3.3	91
25	Fluid seepage along the San Clemente Fault scarp: basin-wide impact on barium cycling. Earth and Planetary Science Letters, 2002, 203, 181-194.	4.4	90
26	Rare earth element geochemistry in cold-seep pore waters of Hydrate Ridge, northeast Pacific Ocean. Geo-Marine Letters, 2013, 33, 369-379.	1.1	77
27	Gas hydrate occurrences and their relation to host sediment properties: Results from Second Ulleung Basin Gas Hydrate Drilling Expedition, East Sea. Marine and Petroleum Geology, 2013, 47, 21-29.	3.3	74
28	An integrated view of the methane system in the pockmarks at Vestnesa Ridge, 79°N. Marine Geology, 2017, 390, 282-300.	2.1	74
29	Fluid sources, fluid pathways and diagenetic reactions across an accretionary prism revealed by Sr and B geochemistry. Earth and Planetary Science Letters, 2005, 239, 106-121.	4.4	68
30	Silicate weathering in anoxic marine sediment as a requirement for authigenic carbonate burial. Earth-Science Reviews, 2020, 200, 102960.	9.1	65
31	Gas hydrate distribution and carbon sequestration through coupled microbial methanogenesis and silicate weathering in the Krishna–Godavari Basin, offshore India. Marine and Petroleum Geology, 2014, 58, 233-253.	3.3	64
32	Controls on calcium isotope fractionation in sedimentary porewaters. Earth and Planetary Science Letters, 2009, 279, 373-382.	4.4	62
33	Methane-derived authigenic carbonates from modern and paleoseeps on the Cascadia margin: Mechanisms of formation and diagenetic signals. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 390, 52-67.	2.3	60
34	Seepage from an arctic shallow marine gas hydrate reservoir is insensitive to momentary ocean warming. Nature Communications, 2017, 8, 15745.	12.8	59
35	Barium-isotopic constraints on the origin of post-Marinoan barites. Earth and Planetary Science Letters, 2019, 519, 234-244.	4.4	59
36	Understanding Himalayan erosion and the significance of the Nicobar Fan. Earth and Planetary Science Letters, 2017, 475, 134-142.	4.4	58

#	Article	IF	CITATIONS
37	Release of mineral-bound water prior to subduction tied to shallow seismogenic slip off Sumatra. Science, 2017, 356, 841-844.	12.6	57
38	Carbon cycling within the sulfate-methane-transition-zone in marine sediments from the Ulleung Basin. Biogeochemistry, 2013, 115, 129-148.	3.5	55
39	Pore fluid chemistry from the Second Gas Hydrate Drilling Expedition in the Ulleung Basin (UBCH2): Source, mechanisms and consequences of fluid freshening in the central part of the Ulleung Basin, East Sea. Marine and Petroleum Geology, 2013, 47, 99-112.	3.3	53
40	Influence of total organic carbon deposition on the inventory of gas hydrate in the Indian continental margins. Marine and Petroleum Geology, 2014, 58, 406-424.	3.3	51
41	Towards quantifying the reaction network around the sulfate–methane-transition-zone in the Ulleung Basin, East Sea, with a kinetic modeling approach. Geochimica Et Cosmochimica Acta, 2014, 140, 127-141.	3.9	44
42	Ethane enrichment and propane depletion in subsurface gases indicate gas hydrate occurrence in marine sediments at southern Hydrate Ridge offshore Oregon. Organic Geochemistry, 2004, 35, 1067-1080.	1.8	43
43	Gas origin and migration in the Ulleung Basin, East Sea: Results from the Second Ulleung Basin Gas Hydrate Drilling Expedition (UBCH2). Marine and Petroleum Geology, 2013, 47, 113-124.	3.3	42
44	Post depositional alteration of foraminiferal shells in cold seep settings: New insights from flow-through time-resolved analyses of biogenic and inorganic seep carbonates. Earth and Planetary Science Letters, 2010, 299, 10-22.	4.4	41
45	Anomalous porosity preservation and preferential accumulation of gas hydrate in the Andaman accretionary wedge, NGHP-01 site 17A. Marine and Petroleum Geology, 2014, 58, 99-116.	3.3	38
46	Controls on rare earth element distributions in ancient organic-rich sedimentary sequences: Role of post-depositional diagenesis of phosphorus phases. Chemical Geology, 2017, 466, 533-544.	3.3	38
47	Using the 87Sr/86Sr of modern and paleoseep carbonates from northern Cascadia to link modern fluid flow to the past. Chemical Geology, 2012, 334, 122-130.	3.3	37
48	Composition and origin of authigenic carbonates in the Krishna–Godavari and Mahanadi Basins, eastern continental margin of India. Marine and Petroleum Geology, 2014, 58, 438-460.	3.3	37
49	Marine silicate weathering in the anoxic sediment of the Ulleung Basin: Evidence and consequences. Geochemistry, Geophysics, Geosystems, 2016, 17, 3437-3453.	2.5	35
50	Real-time monitoring of calcification process by Sporosarcina pasteurii biofilm. Analyst, The, 2016, 141, 2887-2895.	3.5	34
51	Pore fluid geochemistry from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope. Marine and Petroleum Geology, 2011, 28, 332-342.	3.3	33
52	Seasonal methane accumulation and release from a gas emission site in the central North Sea. Biogeosciences, 2015, 12, 5261-5276.	3.3	32
53	Fluid Origins, Thermal Regimes, and Fluid and Solute Fluxes in the Forearc of Subduction Zones. Developments in Marine Geology, 2014, 7, 671-733.	0.4	31
54	Geochemical constraints on the temperature and timing of carbonate formation and lithification in the Nankai Trough, NanTroSEIZE transect. Geochimica Et Cosmochimica Acta, 2017, 198, 92-114.	3.9	31

#	Article	IF	CITATIONS
55	Seafloor sealing, doming, and collapse associated with gas seeps and authigenic carbonate structures at Venere mud volcano, Central Mediterranean. Deep-Sea Research Part I: Oceanographic Research Papers, 2018, 137, 76-96.	1.4	31
56	Variations in Gas and Water Pulses at an Arctic Seep: Fluid Sources and Methane Transport. Geophysical Research Letters, 2018, 45, 4153-4162.	4.0	30
57	Inferences on gas transport based on molecular and isotopic signatures of gases at acoustic chimneys and background sites in the Ulleung Basin. Organic Geochemistry, 2012, 43, 26-38.	1.8	28
58	Crustal fluid and ash alteration impacts on the biosphere of Shikoku Basin sediments, Nankai Trough, Japan. Geobiology, 2015, 13, 562-580.	2.4	28
59	A kinetic-model approach to quantify the effect of mass transport deposits on pore water profiles in the Krishna–Godavari Basin, Bay of Bengal. Marine and Petroleum Geology, 2014, 58, 223-232.	3.3	25
60	Methane sources feeding cold seeps on the shelf and upper continental slope off central Oregon, USA. Geochemistry, Geophysics, Geosystems, 2009, 10, .	2,5	24
61	Carbon cycling fed by methane seepage at the shallow Cumberland Bay, South Georgia, subâ€Antarctic. Geochemistry, Geophysics, Geosystems, 2016, 17, 1401-1418.	2.5	23
62	Reconstructing the history of fluid flow at cold seep sites from Ba/Ca ratios in vesicomyid clam shells. Limnology and Oceanography, 2001, 46, 1701-1708.	3.1	22
63	Expedition 344 summary. Proceedings of the Integrated Ocean Drilling Program Integrated Ocean Drilling Program, 0, , .	1.0	22
64	Fracture-controlled fluid transport supports microbial methane-oxidizing communities at Vestnesa Ridge. Biogeosciences, 2019, 16, 2221-2232.	3.3	21
65	Origin and Transformation of Light Hydrocarbons Ascending at an Active Pockmark on Vestnesa Ridge, Arctic Ocean. Journal of Geophysical Research: Solid Earth, 2020, 125, e2018JB016679.	3.4	20
66	Expedition 372B/375 summary. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	20
67	Contribution of cold seep barite to the barium geochemical budget of a marginal basin. Deep-Sea Research Part I: Oceanographic Research Papers, 2008, 55, 801-811.	1.4	19
68	Expedition 362 summary. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	19
69	Expedition 372B/375 methods. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	18
70	Site U1520. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	18
71	Sedimentation Controls on Methaneâ€Hydrate Dynamics Across Glacial/Interglacial Stages: An Example From International Ocean Discovery Program Site U1517, Hikurangi Margin. Geochemistry, Geophysics, Geosystems, 2019, 20, 4906-4921.	2.5	17
72	Site U1518. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	16

#	Article	IF	CITATIONS
73	Mineral changes in cement-sandstone matrices induced by biocementation. International Journal of Greenhouse Gas Control, 2016, 49, 312-322.	4.6	15
74	Impact of iron release by volcanic ash alteration on carbon cycling in sediments of the northern Hikurangi margin. Earth and Planetary Science Letters, 2020, 541, 116288.	4.4	15
75	Gas hydrate transect across Northern Cascadia Margin. Eos, 2006, 87, 325.	0.1	14
76	Site U1517. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	14
77	Methane Hydrate Formation in Ulleung Basin Under Conditions of Variable Salinity: Reduced Model and Experiments. Transport in Porous Media, 2016, 114, 1-27.	2.6	13
78	Reply to comment on: "Gas hydrate growth, methane transport and chloride enrichment at the southern summit of Hydrate Ridge, Cascadia Margin off Oregon― Earth and Planetary Science Letters, 2005, 239, 168-175.	4.4	12
79	Expedition 362 methods. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	12
80	Depressurization experiment of pressure cores from the central Ulleung Basin, East Sea: Insights into gas chemistry. Organic Geochemistry, 2013, 62, 86-95.	1.8	11
81	Microbial distributions detected by an oligonucleotide microarray across geochemical zones associated with methane in marine sediments from the Ulleung Basin. Marine and Petroleum Geology, 2013, 47, 147-154.	3.3	11
82	Site U1519. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	11
83	Towards a global quantification of volcanogenic aluminosilicate alteration rates through the mass balance of strontium in marine sediments. Chemical Geology, 2020, 550, 119743.	3.3	10
84	Data report: strontium isotope analyses of pore fluids from the CRISP-A transect drilled during Expeditions 334 and 344. Proceedings of the Integrated Ocean Drilling Program Integrated Ocean Drilling Program, 0, , .	1.0	10
85	Constraining the Age and Evolution of the Tuaheni Landslide Complex, Hikurangi Margin, New Zealand, Using Poreâ€Water Geochemistry and Numerical Modeling. Geophysical Research Letters, 2020, 47, e2020GL087243.	4.0	9
86	Distinct methane-dependent biogeochemical states in Arctic seafloor gas hydrate mounds. Nature Communications, 2021, 12, 6296.	12.8	9
87	Site U1480. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	8
88	Interplay of Subduction Tectonics, Sedimentation, and Carbon Cycling. Geochemistry, Geophysics, Geosystems, 2019, 20, 4939-4955.	2.5	7
89	Adaptive modeling of methane hydrates. Procedia Computer Science, 2010, 1, 709-717.	2.0	6
90	Isolating Detrital and Diagenetic Signals in Magnetic Susceptibility Records From Methaneâ€Bearing Marine Sediments. Geochemistry, Geophysics, Geosystems, 2021, 22, e2021GC009867.	2.5	6

#	Article	IF	CITATIONS
91	Expedition 372A summary. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	6
92	Deep-Sourced Fluids From a Convergent Margin Host Distinct Subseafloor Microbial Communities That Change Upon Mud Flow Expulsion. Frontiers in Microbiology, 2019, 10, 1436.	3.5	5
93	Microbial communities from Arctic marine sediments respond slowly to methane addition during <i>ex situ</i> enrichments. Environmental Microbiology, 2020, 22, 1829-1846.	3.8	5
94	Empirically assessing the potential release of rare earth elements from black shale under simulated hydraulic fracturing conditions. Journal of Natural Gas Science and Engineering, 2018, 50, 259-268.	4.4	4
95	A Pulse of Meteoric Subsurface Fluid Discharging Into the Chukchi Sea During the Early Holocene Thermal Maximum (EHTM). Geochemistry, Geophysics, Geosystems, 2021, 22, e2021GC009750.	2.5	4
96	Site U1481. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	4
97	Data report: 87Sr/86Sr in pore fluids from Expedition 362. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	4
98	Mid-slope Site U1380. Proceedings of the Integrated Ocean Drilling Program Integrated Ocean Drilling Program, 0, , .	1.0	4
99	Authigenic Clays Versus Carbonate Formation as Products of Marine Silicate Weathering in the Input Sequence to the Sumatra Subduction Zone. Geochemistry, Geophysics, Geosystems, 2022, 23, .	2.5	3
100	Expedition 372A methods. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	2
101	Formation of modern and Paleozoic stratiform barite at cold methane seeps on continental margins: Comment and Reply. Geology, 2004, 32, e64-e65.	4.4	1
102	Reply to Comments by N. Sultan on "Sedimentation Controls on Methaneâ€Hydrate Dynamics Across Glacial/Interglacial Stages: An Example From International Ocean Discovery Program Site U1517, Hikurangi Marginâ€: Geochemistry, Geophysics, Geosystems, 2020, 21, e2020GC009005.	2.5	1
103	Data report: isotopic and elemental analyses of pore fluids and carbonates from Sites U1378 and U1380 drilled during CRISP-A Expeditions 334 and 344 in the middle slope offshore Costa Rica. Proceedings of the Integrated Ocean Drilling Program Integrated Ocean Drilling Program, 0, , .	1.0	1
104	Relationships between Gas Hydrate Occurrence Types and Sediment Characteristics in the Ulleung Basin, East Sea. Economic and Environmental Geology, 2012, 45, 397-406.	0.4	1
105	Data report: pore water and solid-phase trace element distribution in sediments from IODP Expedition 334 Sites U1378 and U1379. Proceedings of the Integrated Ocean Drilling Program Integrated Ocean Drilling Program, 0, , .	1.0	0
106	Data report: 87Sr/86Sr in pore fluids from IODP Expeditions 372 and 375, Hikurangi margin Proceedings of the International Ocean Discovery Program, 0, , .	0.0	0