Changquan Calvin Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1093384/publications.pdf

Version: 2024-02-01

229 papers

10,648 citations

53 h-index 90 g-index

231 all docs

231 docs citations

times ranked

231

5781 citing authors

#	Article	IF	CITATIONS
1	Pharmaceutical Lauryl Sulfate Salts: Prevalence, Formation Rules, and Formulation Implications. Molecular Pharmaceutics, 2022, 19, 432-439.	2.3	9
2	Effects of shear cell size on flowability of powders measured using a ring shear tester. Powder Technology, 2022, 396, 555-564.	2.1	3
3	Formulation strategies for mitigating dissolution reduction of p-aminobenzoic acid by sodium lauryl sulfate through diffusion layer modulation. International Journal of Pharmaceutics, 2022, 611, 121310.	2.6	4
4	Stress transmission coefficient is a reliable and robust parameter for quantifying powder plasticity. Powder Technology, 2022, 398, 117066.	2.1	5
5	Simultaneous improvement of physical stability, dissolution, bioavailability, and antithrombus efficacy of Aspirin and Ligustrazine through cocrystallization. International Journal of Pharmaceutics, 2022, 616, 121541.	2.6	12
6	Air entrapment during tablet compression $\hat{a}\in$ Diagnosis, impact on tableting performance, and mitigation strategies. International Journal of Pharmaceutics, 2022, 615, 121514.	2.6	7
7	Mechanisms of Crystal Plasticization by Lattice Water. Pharmaceutical Research, 2022, 39, 3113-3122.	1.7	3
8	Nanomechanical testing in drug delivery: Theory, applications, and emerging trends. Advanced Drug Delivery Reviews, 2022, 183, 114167.	6.6	8
9	Profound effects of gastric secretion rate variations on the precipitation of erlotinib in duodenum – an in vitro investigation. International Journal of Pharmaceutics, 2022, , 121722.	2.6	1
10	Complexation with aromatic carboxylic acids expands the solid-state landscape of berberine. International Journal of Pharmaceutics, 2022, 617, 121587.	2.6	9
11	Effect of deaeration on processability of poorly flowing powders by roller compaction. International Journal of Pharmaceutics, 2022, 621, 121803.	2.6	1
12	A powder tabletability equation. Powder Technology, 2022, 408, 117709.	2.1	8
13	How Does the Dissimilarity of Screw Geometry Impact Twin-screw Melt Granulation?. European Journal of Pharmaceutical Sciences, 2021, 157, 105645.	1.9	7
14	Structural Insights into the Distinct Solid-State Properties and Interconversion of Celecoxib <i>N</i> -Methyl-2-pyrrolidone Solvates. Crystal Growth and Design, 2021, 21, 277-286.	1.4	6
15	Low-dose salinomycin inhibits breast cancer metastasis by repolarizing tumor hijacked macrophages toward the M1 phenotype. European Journal of Pharmaceutical Sciences, 2021, 157, 105629.	1.9	11
16	Reversible facile single-crystal-to-single-crystal polymorphic transition accompanied by unit cell volume expansion and twinning. CrystEngComm, 2021, 23, 2648-2653.	1.3	5
17	Mechanically responsive crystalline materials. CrystEngComm, 2021, 23, 5683-5685.	1.3	7
18	Sweet Sulfamethazine Acesulfamate Crystals with Improved Compaction Property. Crystal Growth and Design, 2021, 21, 1077-1085.	1.4	5

#	Article	IF	Citations
19	Structural Origins of Elastic and 2D Plastic Flexibility of Molecular Crystals Investigated with Two Polymorphs of Conformationally Rigid Coumarin. Chemistry of Materials, 2021, 33, 1053-1060.	3.2	50
20	Cocrystal engineering of pharmaceutical solids: therapeutic potential and challenges. CrystEngComm, 2021, 23, 7005-7038.	1.3	58
21	Modulation of the powder properties of lamotrigine by crystal forms. International Journal of Pharmaceutics, 2021, 595, 120274.	2.6	16
22	Nanomechanical mapping and strain rate sensitivity of microcrystalline cellulose. Journal of Materials Research, 2021, 36, 2251-2265.	1.2	10
23	Novel Salt-Cocrystals of Berberine Hydrochloride with Aliphatic Dicarboxylic Acids: Odd–Even Alternation in Physicochemical Properties. Molecular Pharmaceutics, 2021, 18, 1758-1767.	2.3	19
24	Direct compression tablet formulation of celecoxib enabled with a pharmaceutical solvate. International Journal of Pharmaceutics, 2021, 596, 120239.	2.6	8
25	Improving the Solubility, Dissolution, and Bioavailability of Metronidazole via Cocrystallization with Ethyl Gallate. Pharmaceutics, 2021, 13, 546.	2.0	9
26	Drugâ€"Drug Cocrystallization Simultaneously Improves Pharmaceutical Properties of Genistein and Ligustrazine. Crystal Growth and Design, 2021, 21, 3461-3468.	1.4	15
27	Effects of compaction and storage conditions on stability of intravenous immunoglobulin – Implication on developing oral tablets of biologics. International Journal of Pharmaceutics, 2021, 604, 120737.	2.6	3
28	An Elusive Drug–Drug Cocrystal Prepared Using a Heteroseeding Strategy. Crystal Growth and Design, 2021, 21, 5659-5668.	1.4	9
29	Effect of Lipidic Excipients on the Particle Properties and Aerosol Performance of High Drug Load Spray Dried Particles for Inhalation. Journal of Pharmaceutical Sciences, 2021, , .	1.6	5
30	Mean yield pressure from the in-die Heckel analysis is a reliable plasticity parameter. International Journal of Pharmaceutics: X, 2021, 3, 100094.	1.2	8
31	Efficient development of sorafenib tablets with improved oral bioavailability enabled by coprecipitated amorphous solid dispersion. International Journal of Pharmaceutics, 2021, 610, 121216.	2.6	15
32	Exceptional Powder Tabletability of Elastically Flexible Crystals. Crystal Growth and Design, 2021, 21, 6655-6659.	1.4	8
33	The landscape of mechanical properties of molecular crystals. CrystEngComm, 2020, 22, 1149-1153.	1.3	87
34	Interfacial bonding in formulated bilayer tablets. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 147, 69-75.	2.0	7
35	A systematic evaluation of poloxamers as tablet lubricants. International Journal of Pharmaceutics, 2020, 576, 118994.	2.6	12
36	A material-saving and robust approach for obtaining accurate out-of-die powder compressibility. Powder Technology, 2020, 361, 903-909.	2.1	5

#	Article	lF	Citations
37	Expedited Investigation of Powder Caking Aided by Rapid 3D Prototyping of Testing Devices. Journal of Pharmaceutical Sciences, 2020, 109, 769-774.	1.6	1
38	Molecular Interpretation of Mechanical Behavior in Four Basic Crystal Packing of Isoniazid with Homologous Cocrystal Formers. Crystal Growth and Design, 2020, 20, 832-844.	1.4	13
39	The role of the screw profile on granular structure and mixing efficiency of a high-dose hydrophobic drug formulation during twin screw wet granulation. International Journal of Pharmaceutics, 2020, 575, 118958.	2.6	16
40	Microstructures and pharmaceutical properties of ferulic acid agglomerates prepared by different spherical crystallization methods. International Journal of Pharmaceutics, 2020, 574, 118914.	2.6	25
41	Molecular Interpretation of the Compaction Performance and Mechanical Properties of Caffeine Cocrystals: A Polymorphic Study. Molecular Pharmaceutics, 2020, 17, 21-31.	2.3	26
42	Tabletability Flip – Role of Bonding Area and Bonding Strength Interplay. Journal of Pharmaceutical Sciences, 2020, 109, 3569-3573.	1.6	13
43	Profound tabletability deterioration of microcrystalline cellulose by magnesium stearate. International Journal of Pharmaceutics, 2020, 590, 119927.	2.6	13
44	Development of piroxicam mini-tablets enabled by spherical cocrystallization. International Journal of Pharmaceutics, 2020, 590, 119953.	2.6	22
45	The efficient development of a sildenafil orally disintegrating tablet using a material sparing and expedited approach. International Journal of Pharmaceutics, 2020, 589, 119816.	2.6	6
46	Discovery, Characterization, and Pharmaceutical Applications of Two Loratadine–Oxalic Acid Cocrystals. Crystals, 2020, 10, 996.	1.0	3
47	Material-Sparing and Expedited Development of a Tablet Formulation of Carbamazepine Glutaric Acid Cocrystal– a QbD Approach. Pharmaceutical Research, 2020, 37, 153.	1.7	11
48	Novel Quasi-Emulsion Solvent Diffusion-Based Spherical Cocrystallization Strategy for Simultaneously Improving the Manufacturability and Dissolution of Indomethacin. Crystal Growth and Design, 2020, 20, 6752-6762.	1.4	23
49	Effect of Hydroxypropyl Cellulose Level on Twin-Screw Melt Granulation of Acetaminophen. AAPS PharmSciTech, 2020, 21, 240.	1.5	8
50	Recent Advances in Co-processed APIs and Proposals for Enabling Commercialization of These Transformative Technologies. Molecular Pharmaceutics, 2020, 17, 2232-2244.	2.3	41
51	Mitigating Punch Sticking Propensity of Celecoxib by Cocrystallization: An Integrated Computational and Experimental Approach. Crystal Growth and Design, 2020, 20, 4217-4223.	1.4	25
52	A microcrystalline cellulose based drug-composite formulation strategy for developing low dose drug tablets. International Journal of Pharmaceutics, 2020, 585, 119517.	2.6	6
53	Reduction of Punch-Sticking Propensity of Celecoxib by Spherical Crystallization via Polymer Assisted Quasi-Emulsion Solvent Diffusion. Molecular Pharmaceutics, 2020, 17, 1387-1396.	2.3	21
54	Molecular Origin of the Distinct Tabletability of Loratadine and Desloratadine: Role of the Bonding Area – Bonding Strength Interplay. Pharmaceutical Research, 2020, 37, 133.	1.7	7

#	Article	IF	Citations
55	Toward a Molecular Understanding of the Impact of Crystal Size and Shape on Punch Sticking. Molecular Pharmaceutics, 2020, 17, 1148-1158.	2.3	15
56	Reducing the Sublimation Tendency of Ligustrazine through Salt Formation. Crystal Growth and Design, 2020, 20, 2057-2063.	1.4	13
57	Simultaneous taste-masking and oral bioavailability enhancement of Ligustrazine by forming sweet salts. International Journal of Pharmaceutics, 2020, 577, 119089.	2.6	14
58	Extended Release of Highly Water Soluble Isoniazid Attained through Cocrystallization with Curcumin. Crystal Growth and Design, 2020, 20, 1951-1960.	1.4	35
59	Conformation Directed Interaction Anisotropy Leading to Distinct Bending Behaviors of Two ROY Polymorphs. Crystal Growth and Design, 2020, 20, 4764-4769.	1.4	44
60	Intermolecular interactions and disorder in six isostructural celecoxib solvates. Acta Crystallographica Section C, Structural Chemistry, 2020, 76, 632-638.	0.2	6
61	Workshop Report: USP Workshop on Advancements in In Vitro Performance Testing of Drug Products. Dissolution Technologies, 2020, 27, 52-70.	0.2	2
62	Robust bulk preparation and characterization of sulfamethazine and saccharine salt and cocrystal polymorphs. CrystEngComm, 2019, 21, 2089-2096.	1.3	22
63	Minimum Interfacial Bonding Strength for Bilayer Tablets Determined Using a Survival Test. Pharmaceutical Research, 2019, 36, 139.	1.7	4
64	Insights into the effect of compaction pressure and material properties on interfacial bonding strength of bilayer tablets. Powder Technology, 2019, 354, 867-876.	2.1	14
65	Correction to Crystal Growth of Celecoxib from Amorphous State: Polymorphism, Growth Mechanism, and Kinetics. Crystal Growth and Design, 2019, 19, 4894-4894.	1.4	O
66	Effect of particle size on interfacial bonding strength of bilayer tablets. Powder Technology, 2019, 356, 97-101.	2.1	7
67	Single-Crystal Plasticity Defies Bulk-Phase Mechanics in Isoniazid Cocrystals with Analogous Coformers. Crystal Growth and Design, 2019, 19, 4465-4475.	1.4	8
68	Structural Features of Sulfamethizole and Its Cocrystals: Beauty Within. Crystal Growth and Design, 2019, 19, 7185-7192.	1.4	19
69	Improving Powder Characteristics by Surface Modification Using Atomic Layer Deposition. Organic Process Research and Development, 2019, 23, 2362-2368.	1.3	15
70	Fast Determination of Phase Stability of Hydrates Using Intrinsic Dissolution Rate Measurements. Crystal Growth and Design, 2019, 19, 5471-5476.	1.4	9
71	Proportionality between powder cohesion and unconfined yield strength from shear cell testing. Heliyon, 2019, 5, e01171.	1.4	4
72	Developing Biologics Tablets: The Effects of Compression on the Structure and Stability of Bovine Serum Albumin and Lysozyme. Molecular Pharmaceutics, 2019, 16, 1119-1131.	2.3	11

#	Article	IF	Citations
7 3	Polymer Nanocoating of Amorphous Drugs for Improving Stability, Dissolution, Powder Flow, and Tabletability: The Case of Chitosan-Coated Indomethacin. Molecular Pharmaceutics, 2019, 16, 1305-1311.	2.3	37
74	Relationship between hydrate stability and accuracy of true density measured by helium pycnometry. International Journal of Pharmaceutics, 2019, 567, 118444.	2.6	17
75	Tableting performance of various mannitol and lactose grades assessed by compaction simulation and chemometrical analysis. International Journal of Pharmaceutics, 2019, 566, 24-31.	2.6	35
76	Crystal Growth of Celecoxib from Amorphous State: Polymorphism, Growth Mechanism, and Kinetics. Crystal Growth and Design, 2019, 19, 3592-3600.	1.4	32
77	Effects of Water on Powder Flowability of Diverse Powders Assessed by Complimentary Techniques. Journal of Pharmaceutical Sciences, 2019, 108, 2613-2620.	1.6	12
78	Expedited Tablet Formulation Development of a Highly Soluble Carbamazepine Cocrystal Enabled by Precipitation Inhibition in Diffusion Layer. Pharmaceutical Research, 2019, 36, 90.	1.7	14
79	Twistable Pharmaceutical Crystal Exhibiting Exceptional Plasticity and Tabletability. Chemistry of Materials, 2019, 31, 3818-3822.	3.2	82
80	Cocrystal Engineering of Itraconazole with Suberic Acid via Rotary Evaporation and Spray Drying. Crystal Growth and Design, 2019, 19, 2736-2745.	1.4	36
81	Computational Techniques for Predicting Mechanical Properties of Organic Crystals: A Systematic Evaluation. Molecular Pharmaceutics, 2019, 16, 1732-1741.	2.3	62
82	Reduced Punch Sticking Propensity of Acesulfame by Salt Formation: Role of Crystal Mechanical Property and Surface Chemistry. Molecular Pharmaceutics, 2019, 16, 2700-2707.	2.3	24
83	Cubosomes with surface cross-linked chitosan exhibit sustained release and bioavailability enhancement for vinpocetine. RSC Advances, 2019, 9, 6287-6298.	1.7	29
84	Effect of screw profile and processing conditions on physical transformation and chemical degradation of gabapentin during twin-screw melt granulation. European Journal of Pharmaceutical Sciences, 2019, 131, 243-253.	1.9	25
85	Profoundly Improved Plasticity and Tabletability of Griseofulvin by in Situ Solvation and Desolvation during Spherical Crystallization. Crystal Growth and Design, 2019, 19, 2350-2357.	1.4	20
86	Spherical Cocrystallizationâ€"An Enabling Technology for the Development of High Dose Direct Compression Tablets of Poorly Soluble Drugs. Crystal Growth and Design, 2019, 19, 2503-2510.	1.4	27
87	Exceptionally Elastic Single-Component Pharmaceutical Crystals. Chemistry of Materials, 2019, 31, 1794-1799.	3.2	91
88	Correction to Fast Determination of Phase Stability of Hydrates Using Intrinsic Dissolution Rate Measurements. Crystal Growth and Design, 2019, 19, 7464-7464.	1.4	0
89	Crystallographic and Energetic Insights into Reduced Dissolution and Physical Stability of a Drug–Surfactant Salt: The Case of Norfloxacin Lauryl Sulfate. Molecular Pharmaceutics, 2019, 17, 579-587.	2.3	3
90	Direct Compression Tablet Containing 99% Active Ingredient—A Tale of Spherical Crystallization. Journal of Pharmaceutical Sciences, 2019, 108, 1396-1400.	1.6	49

#	Article	IF	CITATIONS
91	Effects of thermal binders on chemical stabilities and tabletability of gabapentin granules prepared by twin-screw melt granulation. International Journal of Pharmaceutics, 2019, 559, 37-47.	2.6	23
92	A platform direct compression formulation for low dose sustained-release tablets enabled by a dual particle engineering approach. Powder Technology, 2019, 342, 856-863.	2.1	7
93	Improving solid-state properties of berberine chloride through forming a salt cocrystal with citric acid. International Journal of Pharmaceutics, 2019, 554, 14-20.	2.6	55
94	Mechanism for the Reduced Dissolution of Ritonavir Tablets by Sodium Lauryl Sulfate. Journal of Pharmaceutical Sciences, 2019, 108, 516-524.	1.6	26
95	Structures and Properties of Granules Prepared By High Shear Wet Granulation. , 2019, , 119-147.		2
96	The relationship among tensile strength, Young's modulus, and indentation hardness of pharmaceutical compacts. Powder Technology, 2018, 331, 1-6.	2.1	66
97	A mesoporous silica based platform to enable tablet formulations of low dose drugs by direct compression. International Journal of Pharmaceutics, 2018, 539, 184-189.	2.6	17
98	Systematic evaluation of common lubricants for optimal use in tablet formulation. European Journal of Pharmaceutical Sciences, 2018, 117, 118-127.	1.9	47
99	Identifying Slip Planes in Organic Polymorphs by Combined Energy Framework Calculations and Topology Analysis. Crystal Growth and Design, 2018, 18, 1909-1916.	1.4	63
100	Reduced interface spin polarization by antiferromagnetically coupled Mn segregated to the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="normal">C<mml:msub><mml:mi mathvariant="normal">o<mml:mn>2</mml:mn></mml:mi </mml:msub><mml:mi>MnSi</mml:mi></mml:mi </mml:mrow></mml:math>	1.1 :/mml:mat	10 h>
101	/GaAs (001) interface. Physical Review B, 2018, 97, . Crystal and Particle Engineering Strategies for Improving Powder Compression and Flow Properties to Enable Continuous Tablet Manufacturing by Direct Compression. Journal of Pharmaceutical Sciences, 2018, 107, 968-974.	1.6	70
102	Improving Dissolution Rate of Carbamazepine-Glutaric Acid Cocrystal Through Solubilization by Excess Coformer. Pharmaceutical Research, 2018, 35, 4.	1.7	41
103	Comparative analyses of flow and compaction properties of diverse mannitol and lactose grades. International Journal of Pharmaceutics, 2018, 546, 39-49.	2.6	42
104	Modulating Sticking Propensity of Pharmaceuticals Through Excipient Selection in a Direct Compression Tablet Formulation. Pharmaceutical Research, 2018, 35, 113.	1.7	26
105	Relating the tableting behavior of piroxicam polytypes to their crystal structures using energy-vector models. International Journal of Pharmaceutics, 2018, 543, 46-51.	2.6	10
106	Subsurface nucleation of supercooled acetaminophen. CrystEngComm, 2018, 20, 6867-6870.	1.3	2
107	A systematic evaluation of dual functionality of sodium lauryl sulfate as a tablet lubricant and wetting enhancer. International Journal of Pharmaceutics, 2018, 552, 139-147.	2.6	29
108	Anion Exchange Reaction for Preparing Acesulfame Solid Forms. Crystal Growth and Design, 2018, 18, 4215-4219.	1.4	16

#	Article	IF	CITATIONS
109	Preparation, Characterization, and Formulation Development of Drug–Drug Protic Ionic Liquids of Diphenhydramine with Ibuprofen and Naproxen. Molecular Pharmaceutics, 2018, 15, 4190-4201.	2.3	40
110	Lack of dependence of mechanical properties of baicalein cocrystals on those of the constituent components. CrystEngComm, 2018, 20, 5486-5489.	1.3	13
111	Ribbon density and milling parameters that determine fines fraction in a dry granulation. Powder Technology, 2018, 338, 162-167.	2.1	16
112	Cocrystallization of Curcumin with Benzenediols and Benzenetriols via Rapid Solvent Removal. Crystal Growth and Design, 2018, 18, 5534-5546.	1.4	40
113	Microstructure of Tabletâ€"Pharmaceutical Significance, Assessment, and Engineering. Pharmaceutical Research, 2017, 34, 918-928.	1.7	65
114	Self-templating accelerates precipitation of carbamazepine dihydrate during the dissolution of a soluble carbamazepine cocrystal. CrystEngComm, 2017, 19, 1156-1159.	1.3	14
115	Powder properties and compaction parameters that influence punch sticking propensity of pharmaceuticals. International Journal of Pharmaceutics, 2017, 521, 374-383.	2.6	54
116	Dapagliflozin-citric acid cocrystal showing better solid state properties than dapagliflozin. European Journal of Pharmaceutical Sciences, 2017, 104, 255-261.	1.9	54
117	Superior Plasticity and Tabletability of Theophylline Monohydrate. Molecular Pharmaceutics, 2017, 14, 2047-2055.	2.3	78
118	Dependence of Punch Sticking on Compaction Pressureâ€"Roles of Particle Deformability and Tablet Tensile Strength. Journal of Pharmaceutical Sciences, 2017, 106, 2060-2067.	1.6	29
119	Ribbon thickness influences fine generation during dry granulation. International Journal of Pharmaceutics, 2017, 529, 87-88.	2.6	10
120	Gaining insight into tablet capping tendency from compaction simulation. International Journal of Pharmaceutics, 2017, 524, 111-120.	2.6	51
121	Tensile and shear methods for measuring strength of bilayer tablets. International Journal of Pharmaceutics, 2017, 523, 121-126.	2.6	20
122	Particle Engineering for Enabling a Formulation Platform Suitable for Manufacturing Low-Dose Tablets by Direct Compression. Journal of Pharmaceutical Sciences, 2017, 106, 1772-1777.	1.6	34
123	Lubrication with magnesium stearate increases tablet brittleness. Powder Technology, 2017, 309, 126-132.	2.1	44
124	Relationships among Crystal Structures, Mechanical Properties, and Tableting Performance Probed Using Four Salts of Diphenhydramine. Crystal Growth and Design, 2017, 17, 6030-6040.	1.4	56
125	Dependence of Friability on Tablet Mechanical Properties and a Predictive Approach for Binary Mixtures. Pharmaceutical Research, 2017, 34, 2901-2909.	1.7	45
126	Expedited development of a high dose orally disintegrating metformin tablet enabled by sweet salt formation with acesulfame. International Journal of Pharmaceutics, 2017, 532, 435-443.	2.6	37

#	Article	IF	CITATIONS
127	The suitability of common compressibility equations for characterizing plasticity of diverse powders. International Journal of Pharmaceutics, 2017, 532, 124-130.	2.6	59
128	Expedited Development of Diphenhydramine Orally Disintegrating Tablet through Integrated Crystal and Particle Engineering. Molecular Pharmaceutics, 2017, 14, 3399-3408.	2.3	23
129	Tablets of multi-unit pellet system for controlled drug delivery. Journal of Controlled Release, 2017, 262, 222-231.	4.8	56
130	Mechanical Properties and Tableting Behavior of Amorphous Solid Dispersions. Journal of Pharmaceutical Sciences, 2017, 106, 217-223.	1.6	32
131	A top coating strategy with highly bonding polymers to enable direct tableting of multiple unit pellet system (MUPS). Powder Technology, 2017, 305, 591-596.	2.1	17
132	Preparation of slab-shaped lactose carrier particles for dry powder inhalers by air jet milling. Asian Journal of Pharmaceutical Sciences, 2017, 12, 59-65.	4.3	9
133	The phenomenon of tablet flashing — Its impact on tableting data analysis and a method to eliminate it. Powder Technology, 2017, 305, 117-124.	2.1	32
134	Mechanism and Kinetics of Punch Sticking of Pharmaceuticals. Journal of Pharmaceutical Sciences, 2017, 106, 151-158.	1.6	54
135	Impact of differential surface anisotropy on biopharmaceutical performance of celecoxib. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, C114-C114.	0.0	0
136	Structural origin of superior plasticity and tabletability of theophylline monohydrate. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, C115-C115.	0.0	0
137	Macroindentation hardness measurementâ€"Modernization and applications. International Journal of Pharmaceutics, 2016, 506, 262-267.	2.6	38
138	A classification system for tableting behaviors of binary powder mixtures. Asian Journal of Pharmaceutical Sciences, 2016, 11, 486-491.	4.3	32
139	Enabling the Tablet Product Development of 5-Fluorocytosine by Conjugate Acid Base Cocrystals. Journal of Pharmaceutical Sciences, 2016, 105, 1960-1966.	1.6	16
140	Process optimization of dry granulation based tableting line: Extracting physical material characteristics from granules, ribbons and tablets using near-IR (NIR) spectroscopic measurement. Powder Technology, 2016, 300, 120-125.	2.1	29
141	Mini review: Mechanisms to the loss of tabletability by dry granulation. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 106, 9-14.	2.0	85
142	Solid-state characterization of optically pure (+)Dihydromyricetin extracted from Ampelopsis grossedentata leaves. International Journal of Pharmaceutics, 2016, 511, 245-252.	2.6	42
143	Enhancing Bioavailability of Dihydromyricetin through Inhibiting Precipitation of Soluble Cocrystals by a Crystallization Inhibitor. Crystal Growth and Design, 2016, 16, 5030-5039.	1.4	75
144	Harvesting Potential Dissolution Advantages of Soluble Cocrystals by Depressing Precipitation Using the Common Coformer Effect. Crystal Growth and Design, 2016, 16, 6719-6721.	1.4	30

#	Article	IF	Citations
145	Resveratrol cocrystals with enhanced solubility and tabletability. International Journal of Pharmaceutics, 2016, 509, 391-399.	2.6	87
146	Analytical method development for powder characterization: Visualization of the critical drug loading affecting the processability of a formulation for direct compression. Journal of Pharmaceutical and Biomedical Analysis, 2016, 128, 462-468.	1.4	17
147	A critical Examination of the Phenomenon of Bonding Area - Bonding Strength Interplay in Powder Tableting. Pharmaceutical Research, 2016, 33, 1126-1132.	1.7	106
148	Quantifying effects of moisture content on flow properties of microcrystalline cellulose using a ring shear tester. Powder Technology, 2016, 289, 104-108.	2.1	76
149	Sweet Berberine. Crystal Growth and Design, 2016, 16, 933-939.	1.4	61
150	The development of carbamazepine-succinic acid cocrystal tablet formulations with improved <i>in vitro</i> and <i>in vivo</i> performance. Drug Development and Industrial Pharmacy, 2016, 42, 969-976.	0.9	51
151	Tabletability Modulation Through Surface Engineering. Journal of Pharmaceutical Sciences, 2015, 104, 2645-2648.	1.6	29
152	Correlation Among Crystal Structure, Mechanical Behavior, and Tabletability in the Co-Crystals of Vanillin Isomers. Crystal Growth and Design, 2015, 15, 1827-1832.	1.4	104
153	Designing Micellar Nanocarriers with Improved Drug Loading and Stability Based on Solubility Parameter. Molecular Pharmaceutics, 2015, 12, 816-825.	2.3	51
154	Dependence of tablet brittleness on tensile strength and porosity. International Journal of Pharmaceutics, 2015, 493, 208-213.	2.6	32
155	From molecular salt to pseudo CAB cocrystal: Expanding solid-state landscape of carboxylic acids based on charge-assisted COOHâc COOâc hydrogen bonds. Journal of Molecular Structure, 2015, 1099, 516-522.	1.8	41
156	Development of highly stabilized curcumin nanoparticles by flash nanoprecipitation and lyophilization. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 94, 436-449.	2.0	70
157	Solvent and additive interactions as determinants in the nucleation pathway: general discussion. Faraday Discussions, 2015, 179, 383-420.	1.6	18
158	Nucleation in complex multi-component and multi-phase systems: general discussion. Faraday Discussions, 2015, 179, 503-542.	1.6	6
159	Near-infrared chemical imaging (NIR-CI) as a process monitoring solution for a production line of roll compaction and tableting. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 93, 293-302.	2.0	45
160	A new tablet brittleness index. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 93, 260-266.	2.0	55
161	Dependence of ejection force on tableting speed—A compaction simulation study. Powder Technology, 2015, 279, 123-126.	2.1	66
162	Validation and applications of an expedited tablet friability method. International Journal of Pharmaceutics, 2015, 484, 146-155.	2.6	78

#	Article	IF	Citations
163	Significant Expansion of the Solid State Landscape of Salicylic Acid Based on Charge-Assisted Hydrogen Bonding Interactions. Crystal Growth and Design, 2015, 15, 24-28.	1.4	26
164	A Formulation Strategy for Solving the Overgranulation Problem in High Shear Wet Granulation. Journal of Pharmaceutical Sciences, 2014, 103, 2434-2440.	1.6	28
165	Evolution of Structure and Properties of Granules Containing Microcrystalline Cellulose and Polyvinylpyrrolidone During High-Shear Wet Granulation. Journal of Pharmaceutical Sciences, 2014, 103, 207-215.	1.6	29
166	Effect of Heating Rate and Kinetic Model Selection on Activation Energy of Nonisothermal Crystallization of Amorphous Felodipine. Journal of Pharmaceutical Sciences, 2014, 103, 3950-3957.	1.6	11
167	Assessment of the relative performance of a confined impinging jets mixer and a multi-inlet vortex mixer for curcumin nanoparticle production. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88, 462-471.	2.0	43
168	Effect of Crystal Habit on Intrinsic Dissolution Behavior of Celecoxib Due to Differential Wettability. Crystal Growth and Design, 2014, 14, 5283-5292.	1.4	50
169	Design and Preparation of a 4:1 Lamivudine–Oxalic Acid CAB Cocrystal for Improving the Lamivudine Purification Process. Crystal Growth and Design, 2014, 14, 3990-3995.	1.4	23
170	Kinetic Entrapment of a Hidden Curcumin Cocrystal with Phloroglucinol. Crystal Growth and Design, 2014, 14, 5079-5089.	1.4	72
171	Origin of Deteriorated Crystal Plasticity and Compaction Properties of a 1:1 Cocrystal between Piroxicam and Saccharin. Crystal Growth and Design, 2014, 14, 3864-3874.	1.4	70
172	Enabling Tablet Product Development of 5-Fluorocytosine Through Integrated Crystal and Particle Engineering. Journal of Pharmaceutical Sciences, 2014, 103, 1126-1132.	1.6	36
173	Improved solid-state stability of salts by cocrystallization between conjugate acid–base pairs. CrystEngComm, 2013, 15, 5756.	1.3	54
174	Synthon preference in O-protonated amide crystals – dominance of short strong hydrogen bonds. CrystEngComm, 2013, 15, 8941.	1.3	18
175	Improving manufacturability of an ibuprofen powder blend by surface coating with silica nanoparticles. Powder Technology, 2013, 249, 290-296.	2.1	49
176	Enabling direct compression of formulated Danshen powder by surface engineering. Powder Technology, 2013, 241, 211-218.	2.1	24
177	Protonation of Cytosine: Cytosinium vs Hemicytosinium Duplexes. Crystal Growth and Design, 2013, 13, 429-432.	1.4	43
178	Cocrystallization for successful drug delivery. Expert Opinion on Drug Delivery, 2013, 10, 201-213.	2.4	184
179	Impact of Crystal Habit on Biopharmaceutical Performance of Celecoxib. Crystal Growth and Design, 2013, 13, 2824-2832.	1.4	77
180	Design, Synthesis, and Characterization of New 5-Fluorocytosine Salts. Molecular Pharmaceutics, 2013, 10, 2462-2466.	2.3	31

#	Article	IF	Citations
181	A Pitfall in Analyzing Powder Compatibility Data Using Nonlinear Regression. Journal of Pharmaceutical Sciences, 2013, 102, 1135-1136.	1.6	6
182	Probing Interfaces between Pharmaceutical Crystals and Polymers by Neutron Reflectometry. Molecular Pharmaceutics, 2012, 9, 1953-1961.	2.3	2
183	lonized form of acetaminophen with improved compaction properties. CrystEngComm, 2012, 14, 2389-2390.	1.3	56
184	Preparation and Characterization of Surface-Engineered Coarse Microcrystalline Cellulose Through Dry Coating with Silica Nanoparticles. Journal of Pharmaceutical Sciences, 2012, 101, 4258-4266.	1.6	50
185	Design and synthesis of solid state structures with conjugate acid–base pair interactions. CrystEngComm, 2012, 14, 3851.	1.3	28
186	Polymorphs, Salts, and Cocrystals: What's in a Name?. Crystal Growth and Design, 2012, 12, 2147-2152.	1.4	767
187	Direct correlation among crystal structure, mechanical behaviour and tabletability in a trimorphic molecular compound. CrystEngComm, 2012, 14, 3865.	1.3	103
188	Confused HCl: Hydrogen Chloride or Hydrochloric Acid?. Chemistry - A European Journal, 2012, 18, 6462-6464.	1.7	15
189	Correction for Polymorphs, Salts and Cocrystals: What's in a Name?. Crystal Growth and Design, 2012, 12, 4290-4291.	1.4	17
190	Origin of Two Modes of Non-isothermal Crystallization of Glasses Produced by Milling. Pharmaceutical Research, 2012, 29, 1020-1032.	1.7	25
191	Simultaneously Improving the Mechanical Properties, Dissolution Performance, and Hygroscopicity of Ibuprofen and Flurbiprofen by Cocrystallization with Nicotinamide. Pharmaceutical Research, 2012, 29, 1854-1865.	1.7	170
192	Decoding Powder Tabletability: Roles of Particle Adhesion and Plasticity. Journal of Adhesion Science and Technology, 2011, 25, 483-499.	1.4	237
193	Initial moisture content in raw material can profoundly influence high shear wet granulation process. International Journal of Pharmaceutics, 2011, 416, 43-48.	2.6	47
194	Massing in high shear wet granulation can simultaneously improve powder flow and deteriorate powder compaction: A double-edged sword. European Journal of Pharmaceutical Sciences, 2011, 43, 50-56.	1.9	51
195	The Manufacture of Low-Dose Oral Solid Dosage Form to Support Early Clinical Studies Using an Automated Micro-Filing System. AAPS PharmSciTech, 2011, 12, 88-95.	1.5	21
196	Overcoming Poor Tabletability of Pharmaceutical Crystals by Surface Modification. Pharmaceutical Research, 2011, 28, 3248-3255.	1.7	77
197	Understanding Size Enlargement and Hardening of Granules on Tabletability of Unlubricated Granules Prepared by Dry Granulation. Journal of Pharmaceutical Sciences, 2011, 100, 758-766.	1.6	42
198	Profoundly improving flow properties of a cohesive cellulose powder by surface coating with nanoâ€silica through comilling. Journal of Pharmaceutical Sciences, 2011, 100, 4943-4952.	1.6	95

#	Article	IF	CITATIONS
199	Origin of profound changes in powder properties during wetting and nucleation stages of high-shear wet granulation of microcrystalline cellulose. Powder Technology, 2011, 208, 663-668.	2.1	58
200	Reproducibility of flow properties of microcrystalline cellulose — Avicel PH102. Powder Technology, 2011, 212, 253-257.	2.1	43
201	Roles of Granule Size in Over-Granulation During High Shear Wet Granulation. Journal of Pharmaceutical Sciences, 2010, 99, 3322-3325.	1.6	45
202	Transforming Powder Mechanical Properties by Core/Shell Structure: Compressible Sand. Journal of Pharmaceutical Sciences, 2010, 99, 4458-4462.	1.6	47
203	Setting the bar for powder flow properties in successful high speed tableting. Powder Technology, 2010, 201, 106-108.	2.1	117
204	Understanding the relationship between crystal structure, plasticity and compaction behaviour of theophylline, methyl gallate, and their 1 : 1 co-crystal. CrystEngComm, 2010, 12, 2466.	1.3	142
205	Development of a high drug load tablet formulation based on assessment of powder manufacturability: Moving towards quality by design. Journal of Pharmaceutical Sciences, 2009, 98, 239-247.	1.6	101
206	Materials Science Tetrahedronâ€"A Useful Tool for Pharmaceutical Research and Development. Journal of Pharmaceutical Sciences, 2009, 98, 1671-1687.	1.6	205
207	Improving Powder Flow Properties of Citric Acid by Crystal Hydration. Journal of Pharmaceutical Sciences, 2009, 98, 1744-1749.	1.6	45
208	Characterization of thermal behavior of deep eutectic solvents and their potential as drug solubilization vehicles. International Journal of Pharmaceutics, 2009, 378, 136-139.	2.6	417
209	On the Identification of Slip Planes in Organic Crystals Based on Attachment Energy Calculation. Journal of Pharmaceutical Sciences, 2008, 97, 3456-3461.	1.6	73
210	Quantifying Effects of Particulate Properties on Powder Flow Properties Using a Ring Shear Tester. Journal of Pharmaceutical Sciences, 2008, 97, 4030-4039.	1.6	126
211	Mechanism of moisture induced variations in true density and compaction properties of microcrystalline cellulose. International Journal of Pharmaceutics, 2008, 346, 93-101.	2.6	191
212	On the mechanism of reduced tabletability of granules prepared by roller compaction. International Journal of Pharmaceutics, 2008, 347, 171-172.	2.6	26
213	Improving Mechanical Properties of Caffeine and Methyl Gallate Crystals by Cocrystallization. Crystal Growth and Design, 2008, 8, 1575-1579.	1.4	292
214	Thermal Expansion of Organic Crystals and Precision of Calculated Crystal Density: A Survey of Cambridge Crystal Database. Journal of Pharmaceutical Sciences, 2007, 96, 1043-1052.	1.6	39
215	Insensitivity of Compaction Properties of Brittle Granules to Size Enlargement by Roller Compaction. Journal of Pharmaceutical Sciences, 2007, 96, 1445-1450.	1.6	64
216	Influence of crystal structure on the tableting properties of nâ€alkyl 4â€hydroxybenzoate esters (parabens). Journal of Pharmaceutical Sciences, 2007, 96, 3324-3333.	1.6	46

#	Article	IF	CITATIONS
217	Solid-state properties and crystallization behavior of PHA-739521 polymorphs. International Journal of Pharmaceutics, 2006, 319, 114-120.	2.6	12
218	A material-sparing method for simultaneous determination of true density and powder compaction properties—Aspartame as an example. International Journal of Pharmaceutics, 2006, 326, 94-99.	2.6	49
219	Reduced tabletability of roller compacted granules as a result of granule size enlargement. Journal of Pharmaceutical Sciences, 2006, 95, 200-206.	1.6	163
220	Evaluation of the effects of tableting speed on the relationships between compaction pressure, tablet tensile strength, and tablet solid fraction. Journal of Pharmaceutical Sciences, 2005, 94, 465-472.	1.6	292
221	A Study of Sulfamerazine Single Crystals Using Atomic Force Microscopy, Transmission Light Microscopy, and Raman Spectroscopy. Journal of Pharmaceutical Sciences, 2005, 94, 1881-1892.	1.6	18
222	Quantifying Errors in Tableting Data Analysis Using the Ryshkewitch Equation Due to Inaccurate True Density. Journal of Pharmaceutical Sciences, 2005, 94, 2061-2068.	1.6	40
223	True Density of Microcrystalline Cellulose. Journal of Pharmaceutical Sciences, 2005, 94, 2132-2134.	1.6	182
224	Improved Tableting Properties of p-Hydroxybenzoic Acid by Water of Crystallization: A Molecular Insight. Pharmaceutical Research, 2004, 21, 382-386.	1.7	106
225	A Novel Method for Deriving True Density of Pharmaceutical Solids Including Hydrates and Water-Containing Powders. Journal of Pharmaceutical Sciences, 2004, 93, 646-653.	1.6	92
226	Influence of Elastic Deformation of Particles on Heckel Analysis. Pharmaceutical Development and Technology, 2001, 6, 193-200.	1.1	92
227	Effects of initial particle size on the tableting properties of l-lysine monohydrochloride dihydrate powder. International Journal of Pharmaceutics, 2001, 215, 221-228.	2.6	101
228	Influence of crystal structure on the tableting properties of sulfamerazine polymorphs., 2001, 18, 274-280.		258
229	Compaction properties of L-lysine salts. , 2001, 18, 281-286.		35