William S. Noble

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1092884/publications.pdf

Version: 2024-02-01

229 papers 51,081 citations

79 h-index 207 g-index

295 all docs

295
docs citations

295 times ranked 60638 citing authors

#	Article	IF	Citations
1	MEME SUITE: tools for motif discovery and searching. Nucleic Acids Research, 2009, 37, W202-W208.	14.5	8,180
2	Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature, 2007, 447, 799-816.	27.8	4,709
3	FIMO: scanning for occurrences of a given motif. Bioinformatics, 2011, 27, 1017-1018.	4.1	3,382
4	What is a support vector machine?. Nature Biotechnology, 2006, 24, 1565-1567.	17.5	2,669
5	The MEME Suite. Nucleic Acids Research, 2015, 43, W39-W49.	14.5	2,537
6	Semi-supervised learning for peptide identification from shotgun proteomics datasets. Nature Methods, 2007, 4, 923-925.	19.0	2,010
7	Quantifying similarity between motifs. Genome Biology, 2007, 8, R24.	9.6	1,579
8	Machine learning applications in genetics and genomics. Nature Reviews Genetics, 2015, 16, 321-332.	16.3	1,334
9	Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature, 2020, 583, 699-710.	27.8	1,252
_	Assessing computational tools for the discovery of transcription factor binding sites. Nature		1.101
10	Biotechnology, 2005, 23, 137-144.	17.5	1,121
10	Biotechnology, 2005, 23, 137-144. A three-dimensional model of the yeast genome. Nature, 2010, 465, 363-367.	17.5 27.8	1,121 894
	Biotechnology, 2005, 23, 137-144.		
11	Biotechnology, 2005, 23, 137-144. A three-dimensional model of the yeast genome. Nature, 2010, 465, 363-367. Sequence features and chromatin structure around the genomic regions bound by 119 human	27.8	894
11 12	Biotechnology, 2005, 23, 137-144. A three-dimensional model of the yeast genome. Nature, 2010, 465, 363-367. Sequence features and chromatin structure around the genomic regions bound by 119 human transcription factors. Genome Research, 2012, 22, 1798-1812.	27.8 5.5	894 762
11 12 13	Biotechnology, 2005, 23, 137-144. A three-dimensional model of the yeast genome. Nature, 2010, 465, 363-367. Sequence features and chromatin structure around the genomic regions bound by 119 human transcription factors. Genome Research, 2012, 22, 1798-1812. How does multiple testing correction work?. Nature Biotechnology, 2009, 27, 1135-1137.	27.8 5.5 17.5	762 595
11 12 13 14	Biotechnology, 2005, 23, 137-144. A three-dimensional model of the yeast genome. Nature, 2010, 465, 363-367. Sequence features and chromatin structure around the genomic regions bound by 119 human transcription factors. Genome Research, 2012, 22, 1798-1812. How does multiple testing correction work?. Nature Biotechnology, 2009, 27, 1135-1137. A statistical framework for genomic data fusion. Bioinformatics, 2004, 20, 2626-2635. Unsupervised pattern discovery in human chromatin structure through genomic segmentation.	27.8 5.5 17.5 4.1	894 762 595 568
11 12 13 14	Biotechnology, 2005, 23, 137-144. A three-dimensional model of the yeast genome. Nature, 2010, 465, 363-367. Sequence features and chromatin structure around the genomic regions bound by 119 human transcription factors. Genome Research, 2012, 22, 1798-1812. How does multiple testing correction work?. Nature Biotechnology, 2009, 27, 1135-1137. A statistical framework for genomic data fusion. Bioinformatics, 2004, 20, 2626-2635. Unsupervised pattern discovery in human chromatin structure through genomic segmentation. Nature Methods, 2012, 9, 473-476. Assigning Significance to Peptides Identified by Tandem Mass Spectrometry Using Decoy Databases.	27.8 5.5 17.5 4.1	894 762 595 568

#	Article	IF	CITATIONS
19	Kernel methods for predicting protein-protein interactions. Bioinformatics, 2005, 21, i38-i46.	4.1	447
20	Statistical confidence estimation for Hi-C data reveals regulatory chromatin contacts. Genome Research, 2014, 24, 999-1011.	5.5	444
21	Massively multiplex single-cell Hi-C. Nature Methods, 2017, 14, 263-266.	19.0	441
22	A Genome-wide Framework for Mapping Gene Regulation via Cellular Genetic Screens. Cell, 2019, 176, 377-390.e19.	28.9	379
23	HiCRep: assessing the reproducibility of Hi-C data using a stratum-adjusted correlation coefficient. Genome Research, 2017, 27, 1939-1949.	5.5	376
24	Comparative analysis of metazoan chromatin organization. Nature, 2014, 512, 449-452.	27.8	363
25	Fast and Accurate Protein False Discovery Rates on Large-Scale Proteomics Data Sets with Percolator 3.0. Journal of the American Society for Mass Spectrometry, 2016, 27, 1719-1727.	2.8	311
26	Genome-scale mapping of DNase I sensitivity in vivo using tiling DNA microarrays. Nature Methods, 2006, 3, 511-518.	19.0	306
27	Combining Pairwise Sequence Similarity and Support Vector Machines for Detecting Remote Protein Evolutionary and Structural Relationships. Journal of Computational Biology, 2003, 10, 857-868.	1.6	300
28	Nucleosome positioning signals in genomic DNA. Genome Research, 2007, 17, 1170-1177.	5 . 5	287
29	Integrative detection and analysis of structural variation in cancer genomes. Nature Genetics, 2018, 50, 1388-1398.	21.4	268
30	Posterior Error Probabilities and False Discovery Rates: Two Sides of the Same Coin. Journal of Proteome Research, 2008, 7, 40-44.	3.7	264
31	Large-scale identification of yeast integral membrane protein interactions. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12123-12128.	7.1	260
32	Improvements to the Percolator Algorithm for Peptide Identification from Shotgun Proteomics Data Sets. Journal of Proteome Research, 2009, 8, 3737-3745.	3.7	251
33	The Forkhead transcription factor Hcm1 regulates chromosome segregation genes and fills the S-phase gap in the transcriptional circuitry of the cell cycle. Genes and Development, 2006, 20, 2266-2278.	5.9	250
34	Analysis of Peptide MS/MS Spectra from Large-Scale Proteomics Experiments Using Spectrum Libraries. Analytical Chemistry, 2006, 78, 5678-5684.	6.5	237
35	Transmembrane Topology and Signal Peptide Prediction Using Dynamic Bayesian Networks. PLoS Computational Biology, 2008, 4, e1000213.	3.2	232
36	The lncRNA Firre anchors the inactive X chromosome to the nucleolus by binding CTCF and maintains $H3K27me3$ methylation. Genome Biology, 2015 , 16 , 52 .	8.8	229

#	Article	IF	CITATIONS
37	Escape from X Inactivation Varies in Mouse Tissues. PLoS Genetics, 2015, 11, e1005079.	3.5	224
38	A statistical approach for inferring the 3D structure of the genome. Bioinformatics, 2014, 30, i26-i33.	4.1	223
39	A critical assessment of Mus musculus gene function prediction using integrated genomic evidence. Genome Biology, 2008, 9, S2.	9.6	214
40	Bipartite structure of the inactive mouse X chromosome. Genome Biology, 2015, 16, 152.	8.8	211
41	Classification and Subtype Prediction of Adult Soft Tissue Sarcoma by Functional Genomics. American Journal of Pathology, 2003, 163, 691-700.	3.8	207
42	A New Algorithm for the Evaluation of Shotgun Peptide Sequencing in Proteomics:Â Support Vector Machine Classification of Peptide MS/MS Spectra and SEQUEST Scores. Journal of Proteome Research, 2003, 2, 137-146.	3.7	206
43	Learning Gene Functional Classifications from Multiple Data Types. Journal of Computational Biology, 2002, 9, 401-411.	1.6	201
44	Motif-based analysis of large nucleotide data sets using MEME-ChIP. Nature Protocols, 2014, 9, 1428-1450.	12.0	200
45	Sequence and chromatin determinants of cell-type–specific transcription factor binding. Genome Research, 2012, 22, 1723-1734.	5.5	196
46	Three-dimensional modeling of the <i>P. falciparum</i> genome during the erythrocytic cycle reveals a strong connection between genome architecture and gene expression. Genome Research, 2014, 24, 974-988.	5.5	193
47	Choosing negative examples for the prediction of protein-protein interactions. BMC Bioinformatics, 2006, 7, S2.	2.6	189
48	Faster SEQUEST Searching for Peptide Identification from Tandem Mass Spectra. Journal of Proteome Research, 2011, 10, 3871-3879.	3.7	185
49	Rapid and Accurate Peptide Identification from Tandem Mass Spectra. Journal of Proteome Research, 2008, 7, 3022-3027.	3.7	181
50	Classification of Clear-Cell Sarcoma as a Subtype of Melanoma by Genomic Profiling. Journal of Clinical Oncology, 2003, 21, 1775-1781.	1.6	177
51	Fine-scale chromatin interaction maps reveal the cis-regulatory landscape of human lincRNA genes. Nature Methods, 2015, 12, 71-78.	19.0	177
52	A Deeper Look into Cometâ€"Implementation and Features. Journal of the American Society for Mass Spectrometry, 2015, 26, 1865-1874.	2.8	175
53	Technical advances in proteomics: new developments in data-independent acquisition. F1000Research, 2016, 5, 419.	1.6	172
54	PECAN: library-free peptide detection for data-independent acquisition tandem mass spectrometry data. Nature Methods, 2017, 14, 903-908.	19.0	158

#	Article	IF	CITATIONS
55	Topologically associating domains and their long-range contacts are established during early ${\sf G1}$ coincident with the establishment of the replication-timing program. Genome Research, 2015, 25, 1104-1113.	5. 5	157
56	Non-parametric estimation of posterior error probabilities associated with peptides identified by tandem mass spectrometry. Bioinformatics, 2008, 24, i42-i48.	4.1	147
57	Analysis methods for studying the 3D architecture of the genome. Genome Biology, 2015, 16, 183.	8.8	146
58	Peptide-Centric Proteome Analysis: An Alternative Strategy for the Analysis of Tandem Mass Spectrometry Data. Molecular and Cellular Proteomics, 2015, 14, 2301-2307.	3.8	146
59	The spectrum kernel: a string kernel for SVM protein classification. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing, 2002, , 564-75.	0.7	144
60	Learning to predict protein-protein interactions from protein sequences. Bioinformatics, 2003, 19, 1875-1881.	4.1	140
61	Integrative phenomics reveals insight into the structure of phenotypic diversity in budding yeast. Genome Research, 2013, 23, 1496-1504.	5.5	138
62	Massively parallel profiling and predictive modeling of the outcomes of CRISPR/Cas9-mediated double-strand break repair. Nucleic Acids Research, 2019, 47, 7989-8003.	14.5	135
63	MoMo: discovery of statistically significant post-translational modification motifs. Bioinformatics, 2019, 35, 2774-2782.	4.1	131
64	Crux: Rapid Open Source Protein Tandem Mass Spectrometry Analysis. Journal of Proteome Research, 2014, 13, 4488-4491.	3.7	130
65	Measuring the reproducibility and quality of Hi-C data. Genome Biology, 2019, 20, 57.	8.8	125
66	Identification of higher-order functional domains in the human ENCODE regions. Genome Research, 2007, 17, 917-927.	5.5	120
67	Searching for statistically significant regulatory modules. Bioinformatics, 2003, 19, ii16-ii25.	4.1	115
68	Navigating the pitfalls of applying machine learning in genomics. Nature Reviews Genetics, 2022, 23, 169-181.	16.3	114
69	Predicting Human Nucleosome Occupancy from Primary Sequence. PLoS Computational Biology, 2008, 4, e1000134.	3.2	111
70	Protein ranking: From local to global structure in the protein similarity network. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6559-6563.	7.1	109
71	<scp>qvality</scp> : non-parametric estimation of <i>q</i> values and posterior error probabilities. Bioinformatics, 2009, 25, 964-966.	4.1	107
72	Mapping 3D genome architecture through in situ DNase Hi-C. Nature Protocols, 2016, 11, 2104-2121.	12.0	106

#	Article	lF	Citations
73	Comprehensive identification and analysis of human accelerated regulatory DNA. Genome Research, 2015, 25, 1245-1255.	5.5	105
74	Dynamics of genome reorganization during human cardiogenesis reveal an RBM20-dependent splicing factory. Nature Communications, 2019, 10, 1538.	12.8	104
75	Epigenetic priors for identifying active transcription factor binding sites. Bioinformatics, 2012, 28, 56-62.	4.1	103
76	Mammalian X Upregulation Is Associated with Enhanced Transcription Initiation, RNA Half-Life, and MOF-Mediated H4K16 Acetylation. Developmental Cell, 2013, 25, 55-68.	7.0	103
77	Efficient Marginalization to Compute Protein Posterior Probabilities from Shotgun Mass Spectrometry Data. Journal of Proteome Research, 2010, 9, 5346-5357.	3.7	102
78	Unsupervised segmentation of continuous genomic data. Bioinformatics, 2007, 23, 1424-1426.	4.1	101
79	Inferring Clonal Composition from Multiple Sections of a Breast Cancer. PLoS Computational Biology, 2014, 10, e1003703.	3.2	100
80	Empirical comparison of web-based antimicrobial peptide prediction tools. Bioinformatics, 2017, 33, 1921-1929.	4.1	98
81	Critical decisions in metaproteomics: achieving high confidence protein annotations in a sea of unknowns. ISME Journal, 2017, 11, 309-314.	9.8	93
82	HiC-spector: a matrix library for spectral and reproducibility analysis of Hi-C contact maps. Bioinformatics, 2017, 33, 2199-2201.	4.1	92
83	Improving Tandem Mass Spectrum Identification Using Peptide Retention Time Prediction across Diverse Chromatography Conditions. Analytical Chemistry, 2007, 79, 6111-6118.	6.5	90
84	GenomeDISCO: a concordance score for chromosome conformation capture experiments using random walks on contact map graphs. Bioinformatics, 2018, 34, 2701-2707.	4.1	90
85	Mass spectrometrists should search only for peptides they care about. Nature Methods, 2015, 12, 605-608.	19.0	86
86	Widely distributed noncoding purifying selection in the human genome. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12410-12415.	7.1	84
87	Changes in genome organization of parasite-specific gene families during the Plasmodium transmission stages. Nature Communications, 2018, 9, 1910.	12.8	82
88	High-Throughput Single-Cell Sequencing with Linear Amplification. Molecular Cell, 2019, 76, 676-690.e10.	9.7	82
89	Ranking predicted protein structures with support vector regression. Proteins: Structure, Function and Bioinformatics, 2008, 71, 1175-1182.	2.6	80
90	Metabolic Control over mTOR-Dependent Diapause-like State. Developmental Cell, 2020, 52, 236-250.e7.	7.0	79

#	Article	IF	Citations
91	Large-scale prediction of protein-protein interactions from structures. BMC Bioinformatics, 2010, 11, 144.	2.6	77
92	Avocado: a multi-scale deep tensor factorization method learns a latent representation of the human epigenome. Genome Biology, 2020, 21, 81.	8.8	77
93	Predicting the in vivo signature of human gene regulatory sequences. Bioinformatics, 2005, 21, i338-i343.	4.1	76
94	Riboproteomics of the Hepatitis C Virus Internal Ribosomal Entry Site. Journal of Proteome Research, 2004, 3, 949-957.	3.7	75
95	Use of shotgun proteomics for the identification, confirmation, and correction of <i>C. elegans</i> gene annotations. Genome Research, 2008, 18, 1660-1669.	5.5	7 5
96	Joint annotation of chromatin state and chromatin conformation reveals relationships among domain types and identifies domains of cell-type-specific expression. Genome Research, 2015, 25, 544-557.	5.5	74
97	Systematic reconstruction of cellular trajectories across mouse embryogenesis. Nature Genetics, 2022, 54, 328-341.	21.4	73
98	A High-Throughput Screen for Transcription Activation Domains Reveals Their Sequence Features and Permits Prediction by Deep Learning. Molecular Cell, 2020, 78, 890-902.e6.	9.7	70
99	Fast Open Modification Spectral Library Searching through Approximate Nearest Neighbor Indexing. Journal of Proteome Research, 2018, 17, 3463-3474.	3.7	69
100	An Alignment-Free "Metapeptide―Strategy for Metaproteomic Characterization of Microbiome Samples Using Shotgun Metagenomic Sequencing. Journal of Proteome Research, 2016, 15, 2697-2705.	3.7	67
101	Form and function of topologically associating genomic domains in budding yeast. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3061-E3070.	7.1	67
102	Predicting Co-Complexed Protein Pairs from Heterogeneous Data. PLoS Computational Biology, 2008, 4, e1000054.	3.2	65
103	A Quick Guide to Organizing Computational Biology Projects. PLoS Computational Biology, 2009, 5, e1000424.	3.2	64
104	Tandem Mass Spectrum Identification via Cascaded Search. Journal of Proteome Research, 2015, 14, 3027-3038.	3.7	63
105	Orientation-dependent Dxz4 contacts shape the 3D structure of the inactive X chromosome. Nature Communications, 2018, 9, 1445.	12.8	63
106	Accurate identification of centromere locations in yeast genomes using Hi-C. Nucleic Acids Research, 2015, 43, 5331-5339.	14.5	61
107	PREDICTD PaRallel Epigenomics Data Imputation with Cloud-based Tensor Decomposition. Nature Communications, 2018, 9, 1402.	12.8	60
108	A review of statistical methods for protein identification using tandem mass spectrometry. Statistics and Its Interface, 2012, 5, 3-20.	0.3	60

#	Article	lF	CITATIONS
109	Unsupervised embedding of single-cell Hi-C data. Bioinformatics, 2018, 34, i96-i104.	4.1	59
110	Capturing cell type-specific chromatin compartment patterns by applying topic modeling to single-cell Hi-C data. PLoS Computational Biology, 2020, 16, e1008173.	3.2	59
111	Computational and Statistical Analysis of Protein Mass Spectrometry Data. PLoS Computational Biology, 2012, 8, e1002296.	3.2	57
112	The dynamic three-dimensional organization of the diploid yeast genome. ELife, 2017, 6, .	6.0	57
113	Statistical Calibration of the SEQUEST XCorr Function. Journal of Proteome Research, 2009, 8, 2106-2113.	3.7	56
114	Computing Exact p-values for a Cross-correlation Shotgun Proteomics Score Function. Molecular and Cellular Proteomics, 2014, 13, 2467-2479.	3.8	56
115	Improved False Discovery Rate Estimation Procedure for Shotgun Proteomics. Journal of Proteome Research, 2015, 14, 3148-3161.	3.7	55
116	Multiple dimensions of epigenetic gene regulation in the malaria parasite <i>Plasmodium falciparum </i> . BioEssays, 2015, 37, 182-194.	2.5	54
117	High Resolution Models of Transcription Factor-DNA Affinities Improve In Vitro and In Vivo Binding Predictions. PLoS Computational Biology, 2010, 6, e1000916.	3.2	53
118	Software tools for visualizing Hi-C data. Genome Biology, 2017, 18, 26.	8.8	53
119	Integrated systems biology analysis of KSHV latent infection reveals viral induction and reliance on peroxisome mediated lipid metabolism. PLoS Pathogens, 2017, 13, e1006256.	4.7	53
120	Sci-Hi-C: A single-cell Hi-C method for mapping 3D genome organization in large number of single cells. Methods, 2020, 170, 61-68.	3.8	53
121	On Using Samples of Known Protein Content to Assess the Statistical Calibration of Scores Assigned to Peptide-Spectrum Matches in Shotgun Proteomics. Journal of Proteome Research, 2011, 10, 2671-2678.	3.7	52
122	Identifying multi-locus chromatin contacts in human cells using tethered multiple 3C. BMC Genomics, 2015, 16, 121.	2.8	51
123	Modeling peptide fragmentation with dynamic Bayesian networks for peptide identification. Bioinformatics, 2008, 24, i348-i356.	4.1	50
124	Determining the calibration of confidence estimation procedures for unique peptides in shotgun proteomics. Journal of Proteomics, 2013, 80, 123-131.	2.4	49
125	A Unified Multitask Architecture for Predicting Local Protein Properties. PLoS ONE, 2012, 7, e32235.	2.5	48
126	Distinct epigenetic features of differentiation-regulated replication origins. Epigenetics and Chromatin, $2016, 9, 18$.	3.9	47

#	Article	IF	Citations
127	Chromatin compartment dynamics in a haploinsufficient model of cardiac laminopathy. Journal of Cell Biology, 2019, 218, 2919-2944.	5.2	46
128	On the assessment of statistical significance of three-dimensional colocalization of sets of genomic elements. Nucleic Acids Research, 2012, 40, 3849-3855.	14.5	45
129	A dynamic Bayesian network for identifying protein-binding footprints from single molecule-based sequencing data. Bioinformatics, 2010, 26, i334-i342.	4.1	43
130	MetaGOmics: A Web-Based Tool for Peptide-Centric Functional and Taxonomic Analysis of Metaproteomics Data. Proteomes, 2018, 6, 2.	3.5	43
131	Detecting Cross-Linked Peptides by Searching against a Database of Cross-Linked Peptide Pairs. Journal of Proteome Research, 2010, 9, 2488-2495.	3.7	41
132	Matrix-Matched Calibration Curves for Assessing Analytical Figures of Merit in Quantitative Proteomics. Journal of Proteome Research, 2020, 19, 1147-1153.	3.7	41
133	SCOT: Single-Cell Multi-Omics Alignment with Optimal Transport. Journal of Computational Biology, 2022, 29, 3-18.	1.6	40
134	Extremely Fast and Accurate Open Modification Spectral Library Searching of High-Resolution Mass Spectra Using Feature Hashing and Graphics Processing Units. Journal of Proteome Research, 2019, 18, 3792-3799.	3.7	39
135	Independent and complementary methods for large-scale structural analysis of mammalian chromatin. Genome Research, 2007, 17, 928-939.	5.5	38
136	Genomic Interaction Profiles in Breast Cancer Reveal Altered Chromatin Architecture. PLoS ONE, 2013, 8, e73974.	2.5	38
137	A unified encyclopedia of human functional DNA elements through fully automated annotation of 164 human cell types. Genome Biology, 2019, 20, 180.	8.8	37
138	Multiple Functional Categories of Proteins Identified in an in Vitro Cellular Ubiquitin Affinity Extract Using Shotgun Peptide Sequencing. Journal of Proteome Research, 2003, 2, 394-404.	3.7	35
139	A cross-validation scheme for machine learning algorithms in shotgun proteomics. BMC Bioinformatics, 2012, 13, S3.	2.6	34
140	Trans- and cis-acting effects of Firre on epigenetic features of the inactive X chromosome. Nature Communications, 2020, 11, 6053.	12.8	33
141	Unsupervised manifold alignment for single-cell multi-omics data. , 2020, 2020, 1-10.		33
142	Automated mapping of large-scale chromatin structure in ENCODE. Bioinformatics, 2008, 24, 1911-1916.	4.1	31
143	A genome-wide 3C-method for characterizing the three-dimensional architectures of genomes. Methods, 2012, 58, 277-288.	3.8	31
144	Maintaining replication origins in the face of genomic change. Genome Research, 2012, 22, 1940-1952.	5.5	31

#	Article	IF	Citations
145	Segway 2.0: Gaussian mixture models and minibatch training. Bioinformatics, 2018, 34, 669-671.	4.1	31
146	On the Importance of Well-Calibrated Scores for Identifying Shotgun Proteomics Spectra. Journal of Proteome Research, 2015, 14, 1147-1160.	3.7	30
147	Calibration Using a Single-Point External Reference Material Harmonizes Quantitative Mass Spectrometry Proteomics Data between Platforms and Laboratories. Analytical Chemistry, 2018, 90, 13112-13117.	6.5	30
148	A pitfall for machine learning methods aiming to predict across cell types. Genome Biology, 2020, 21, 282.	8.8	29
149	The spring-loaded genome: Nucleosome redistributions are widespread, transient, and DNA-directed. Genome Research, 2014, 24, 251-259.	5.5	28
150	mokapot: Fast and Flexible Semisupervised Learning for Peptide Detection. Journal of Proteome Research, 2021, 20, 1966-1971.	3.7	28
151	Identifying remote protein homologs by network propagation. FEBS Journal, 2005, 272, 5119-5128.	4.7	27
152	A thermodynamic approach to PCR primer design. Nucleic Acids Research, 2009, 37, e95-e95.	14.5	27
153	Computational methods for analyzing and modeling genome structure and organization. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2019, 11, e1435.	6.6	27
154	Averaging Strategy To Reduce Variability in Target-Decoy Estimates of False Discovery Rate. Journal of Proteome Research, 2019, 18, 585-593.	3.7	26
155	Protein Family Classification Using Sparse Markov Transducers. Journal of Computational Biology, 2003, 10, 187-213.	1.6	25
156	Param-Medic: A Tool for Improving MS/MS Database Search Yield by Optimizing Parameter Settings. Journal of Proteome Research, 2017, 16, 1817-1824.	3.7	25
157	DNA sequence+shape kernel enables alignment-free modeling of transcription factor binding. Bioinformatics, 2017, 33, 3003-3010.	4.1	25
158	A learned embedding for efficient joint analysis of millions of mass spectra. Nature Methods, 2022, 19, 675-678.	19.0	25
159	Detecting Remote Evolutionary Relationships among Proteins by Large-Scale Semantic Embedding. PLoS Computational Biology, 2011, 7, e1001047.	3.2	24
160	Dealing with large diagonals in kernel matrices. Annals of the Institute of Statistical Mathematics, 2003, 55, 391-408.	0.8	23
161	Combining High-Resolution and Exact Calibration To Boost Statistical Power: A Well-Calibrated Score Function for High-Resolution MS2 Data. Journal of Proteome Research, 2018, 17, 3644-3656.	3.7	23
162	Predicting gene expression in the human malaria parasite Plasmodium falciparum using histone modification, nucleosome positioning, and 3D localization features. PLoS Computational Biology, 2019, 15, e1007329.	3.2	23

#	Article	IF	Citations
163	Systematic proteomics of endogenous human cohesin reveals an interaction with diverse splicing factors and RNA-binding proteins required for mitotic progression. Journal of Biological Chemistry, 2019, 294, 8760-8772.	3.4	23
164	Completing the ENCODE3 compendium yields accurate imputations across a variety of assays and human biosamples. Genome Biology, 2020, 21, 82.	8.8	22
165	HiCRep.py: fast comparison of Hi-C contact matrices in Python. Bioinformatics, 2021, 37, 2996-2997.	4.1	22
166	Metaproteomics reveal that rapid perturbations in organic matter prioritize functional restructuring over taxonomy in western Arctic Ocean microbiomes. ISME Journal, 2020, 14, 39-52.	9.8	21
167	Learning a Weighted Sequence Model of the Nucleosome Core and Linker Yields More Accurate Predictions in Saccharomyces cerevisiae and Homo sapiens. PLoS Computational Biology, 2010, 6, e1000834.	3.2	20
168	Exploratory analysis of genomic segmentations with Segtools. BMC Bioinformatics, 2011, 12, 415.	2.6	20
169	Using DNase Hi-C techniques to map global and local three-dimensional genome architecture at high resolution. Methods, 2018, 142, 59-73.	3.8	20
170	Ten simple rules for writing a response to reviewers. PLoS Computational Biology, 2017, 13, e1005730.	3.2	20
171	Measuring significant changes in chromatin conformation with ACCOST. Nucleic Acids Research, 2020, 48, 2303-2311.	14.5	19
172	Local chromatin fiber folding represses transcription and loop extrusion in quiescent cells. ELife, 2021, 10, .	6.0	18
173	Implications of COMT long-range interactions on the phenotypic variability of 22q11.2 deletion syndrome. Nucleus, 2013, 4, 487-493.	2.2	17
174	Choosing panels of genomics assays using submodular optimization. Genome Biology, 2016, 17, 229.	8.8	16
175	Largeâ€scale tandem mass spectrum clustering using fast nearest neighbor searching. Rapid Communications in Mass Spectrometry, 2021, , e9153.	1.5	16
176	Using machine learning to speed up manual image annotation: application to a 3D imaging protocol for measuring single cell gene expression in the developing C. elegans embryo. BMC Bioinformatics, 2010, 11, 84.	2.6	15
177	The GIPC1-Akt1 Pathway Is Required for the Specification of the Eye Field in Mouse Embryonic Stem Cells. Stem Cells, 2015, 33, 2674-2685.	3.2	15
178	Machine Learning Strategy That Leverages Large Data sets to Boost Statistical Power in Small-Scale Experiments. Journal of Proteome Research, 2020, 19, 1267-1274.	3.7	15
179	Faster Mass Spectrometry-Based Protein Inference: Junction Trees Are More Efficient than Sampling and Marginalization by Enumeration. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2012, 9, 809-817.	3.0	14
180	Conversion of Prostate Adenocarcinoma to Small Cell Carcinomaâ€Like by Reprogramming. Journal of Cellular Physiology, 2016, 231, 2040-2047.	4.1	14

#	Article	IF	CITATIONS
181	Analysis of secondary structure in proteins by chemical crossâ€linking coupled to MS. Proteomics, 2012, 12, 2746-2752.	2.2	13
182	Inducible CRISPR genome editing platform in naive human embryonic stem cells reveals JARID2 function in self-renewal. Cell Cycle, 2018, 17, 00-00.	2.6	13
183	Dynamic Bayesian Network for Accurate Detection of Peptides from Tandem Mass Spectra. Journal of Proteome Research, 2016, 15, 2749-2759.	3.7	12
184	Choosing nonâ€redundant representative subsets of protein sequence data sets using submodular optimization. Proteins: Structure, Function and Bioinformatics, 2018, 86, 454-466.	2.6	12
185	Multiple Competition-Based FDR Control and Its Application to Peptide Detection. Lecture Notes in Computer Science, 2020, , 54-71.	1.3	12
186	Progressive Calibration and Averaging for Tandem Mass Spectrometry Statistical Confidence Estimation: Why Settle for a Single Decoy?. Lecture Notes in Computer Science, 2017, 10229, 99-116.	1.3	11
187	Single-cell landscape of nuclear configuration and gene expression during stem cell differentiation and X inactivation. Genome Biology, 2021, 22, 279.	8.8	11
188	Identification of genes escaping X inactivation by allelic expression analysis in a novel hybrid mouse model. Data in Brief, 2015, 5, 761-769.	1.0	10
189	Subzero, saline incubations of <i>Colwellia psychrerythraea</i> reveal strategies and biomarkers for sustained life in extreme icy environments. Environmental Microbiology, 2021, 23, 3840-3866.	3.8	10
190	Accurately Assigning Peptides to Spectra When Only a Subset of Peptides Are Relevant. Journal of Proteome Research, 2021, 20, 4153-4164.	3.7	10
191	Precursor Charge State Prediction for Electron Transfer Dissociation Tandem Mass Spectra. Journal of Proteome Research, 2010, 9, 5438-5444.	3.7	9
192	Response to "Mass spectrometrists should search for all peptides, but assess only the ones they care about― Nature Methods, 2017, 14, 644-644.	19.0	9
193	DIAmeter: matching peptides to data-independent acquisition mass spectrometry data. Bioinformatics, 2021, 37, i434-i442.	4.1	9
194	ppx: Programmatic Access to Proteomics Data Repositories. Journal of Proteome Research, 2021, 20, 4621-4624.	3.7	9
195	MCAST: scanning for <i>cis</i> regulatory motif clusters. Bioinformatics, 2016, 32, 1217-1219.	4.1	8
196	Speeding Up Percolator. Journal of Proteome Research, 2019, 18, 3353-3359.	3.7	8
197	Comprehensive characterization of tissue-specific chromatin accessibility in L2 <i>Caenorhabditis elegans </i> nematodes. Genome Research, 2021, 31, 1952-1969.	5.5	8
198	Reducing Peptide Sequence Bias in Quantitative Mass Spectrometry Data with Machine Learning. Journal of Proteome Research, 2022, 21, 1771-1782.	3.7	8

#	Article	IF	Citations
199	Proteomic analyses of nucleus laminaris identified candidate targets of the fragile X mental retardation protein. Journal of Comparative Neurology, 2017, 525, 3341-3359.	1.6	7
200	Controlling the FDR in Imperfect Matches to an Incomplete Database. Journal of the American Statistical Association, 2018, 113, 973-982.	3.1	7
201	Prediction of Phenotype Information from Genotype Data. Communications in Information and Systems, 2010, 10, 99-114.	0.5	7
202	Interpretation of the DOME Recommendations for Machine Learning in Proteomics and Metabolomics. Journal of Proteome Research, 2022, 21, 1204-1207.	3.7	7
203	Meteorological factors and timing of the initiating event of human parturition. International Journal of Biometeorology, 2011, 55, 265-272.	3.0	6
204	Bipartite matching generalizations for peptide identification in tandem mass spectrometry. , 2016, , .		6
205	Detecting Modifications in Proteomics Experiments with Param-Medic. Journal of Proteome Research, 2019, 18, 1902-1906.	3.7	6
206	Building Spectral Libraries from Narrow-Window Data-Independent Acquisition Mass Spectrometry Data. Journal of Proteome Research, 2022, 21, 1382-1391.	3.7	6
207	Visualization and Dissemination of Multidimensional Proteomics Data Comparing Protein Abundance During <i>Caenorhabditis elegans </i> Development. Journal of the American Society for Mass Spectrometry, 2015, 26, 1827-1836.	2.8	5
208	Title is missing!. Annals of the Institute of Statistical Mathematics, 2003, 55, 391-408.	0.8	5
209	Semi-supervised Single-Cell Cross-modality Translation Using Polarbear. Lecture Notes in Computer Science, 2022, , 20-35.	1.3	5
210	Joint Precursor Elution Profile Inference via Regression for Peptide Detection in Data-Independent Acquisition Mass Spectra. Journal of Proteome Research, 2019, 18, 86-94.	3.7	4
211	Submodular sketches of single-cell RNA-seq measurements. , 2020, , .		4
212	Learning Score Function Parameters for Improved Spectrum Identification in Tandem Mass Spectrometry Experiments. Journal of Proteome Research, 2012, 11, 4499-4508.	3.7	3
213	Tandem Mass Spectrometry–Based Amyloid Typing Using Manual Microdissection and Open-Source Data Processing. American Journal of Clinical Pathology, 2022, 157, 748-757.	0.7	3
214	Protein Interaction Networks: Protein Domain Interaction and Protein Function Prediction., 2011,, 427-459.		3
215	Zero-shot imputations across species are enabled through joint modeling of human and mouse epigenomics. , 2020, , .		3
216	A wider field of view to predict expression. Nature Methods, 2021, 18, 1155-1156.	19.0	3

#	Article	IF	CITATIONS
217	On the Relationship between DNA Periodicity and Local Chromatin Structure. Lecture Notes in Computer Science, 2009, , 434-450.	1.3	3
218	Predictive model of 3D domain formation via CTCF-mediated extrusion. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14404-14405.	7.1	2
219	Submodular Generalized Matching for Peptide Identification in Tandem Mass Spectrometry. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 16, 1168-1181.	3.0	2
220	Prioritizing transcriptomic and epigenomic experiments using an optimization strategy that leverages imputedÂdata. Bioinformatics, 2021, 37, 439-447.	4.1	2
221	Using Substitution Matrices to Estimate Probability Distributions for Biological Sequences. Journal of Computational Biology, 2002, 9, 775-791.	1.6	1
222	Faster and more accurate graphical model identification of tandem mass spectra using trellises. Bioinformatics, 2016, 32, i322-i331.	4.1	1
223	Comprehensive statistical inference of the clonal structure of cancer from multiple biopsies. Scientific Reports, 2017, 7, 16943.	3.3	1
224	Predicting Nucleosome Positioning Using Multiple Evidence Tracks. Lecture Notes in Computer Science, 2010, , 441-455.	1.3	1
225	Avocado., 2020,,.		1
226	AUTOMATED VALIDATION OF POLYMERASE CHAIN REACTION AMPLICON MELTING CURVES. Journal of Bioinformatics and Computational Biology, 2006, 04, 299-315.	0.8	0
227	Choosing Non-redundant Representative Subsets Of Protein Sequence Data Sets Using Submodular Optimization. , $2018, \ldots$		0
228	Response to comments on â€Empirical comparison of web-based antimicrobial peptide prediction tools'. Bioinformatics, 2019, 35, 2695-2696.	4.1	0
229	Submodular Maximization via Gradient Ascent: The Case of Deep Submodular Functions. Advances in Neural Information Processing Systems, 2018, 2018, 7989-7999.	2.8	O