Robert G Gilbert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10928675/publications.pdf

Version: 2024-02-01

431 papers

24,251 citations

78 h-index 131 g-index

440 all docs

440 docs citations

440 times ranked

10820 citing authors

#	Article	IF	CITATIONS
1	Effect of processing on the solubility and molecular size of oat \hat{l}^2 -glucan and consequences for starch digestibility of oat-fortified noodles. Food Chemistry, 2022, 372, 131291.	4.2	13
2	Liver fibrosis alters the molecular structures of hepatic glycogen. Carbohydrate Polymers, 2022, 278, 118991.	5.1	3
3	The effect of high-amylose resistant starch on the glycogen structure of diabetic mice. International Journal of Biological Macromolecules, 2022, 200, 124-131.	3.6	8
4	Starch Molecular Structural Features and Volatile Compounds Affecting the Sensory Properties of Polished Australian Wild Rice. Foods, 2022, 11, 511.	1.9	2
5	The role of storage protein fractions in slowing starch digestion in chickpea seed. Food Hydrocolloids, 2022, 129, 107617.	5.6	7
6	A Review on the Structure and Anti-Diabetic (Type 2) Functions of Î ² -Glucans. Foods, 2022, 11, 57.	1.9	5
7	Testing the Linearity Assumption for Starch Structure-Property Relationships in Rices. Frontiers in Nutrition, 2022, 9, .	1.6	2
8	Amylose Inter-Chain Entanglement and Inter-Chain Overlap Impact Rice Quality. Foods, 2022, 11, 1516.	1.9	5
9	Starch molecular structural differences between chalky and translucent parts of chalky rice grains. Food Chemistry, 2022, 394, 133471.	4.2	3
10	Amorphous packing of amylose and elongated branches linked to the enzymatic resistance of high-amylose wheat starch granules. Carbohydrate Polymers, 2022, 295, 119871.	5.1	9
11	Probiotic fermentation modifies the structures of pectic polysaccharides from carrot pulp. Carbohydrate Polymers, 2021, 251, 117116.	5.1	30
12	Effects of endogenous proteins on rice digestion during small intestine (in vitro) digestion. Food Chemistry, 2021, 344, 128687.	4.2	22
13	Characterization of the baking-induced changes in starch molecular and crystalline structures in sugar-snap cookies. Carbohydrate Polymers, 2021, 256, 117518.	5.1	18
14	The importance of glycogen molecular structure for blood glucose control. IScience, 2021, 24, 101953.	1.9	11
15	Identification of Structure-Controlling Rice Biosynthesis Enzymes. Biomacromolecules, 2021, 22, 2148-2159.	2.6	10
16	The dynamic changes of glycogen molecular structure in Escherichia coli BL21(DE3). Carbohydrate Polymers, 2021, 259, 117773.	5.1	7
17	Structural reasons for inhibitory effects of pectin on $\hat{l}\pm$ -amylase enzyme activity and in-vitro digestibility of starch. Food Hydrocolloids, 2021, 114, 106581.	5.6	24
18	Optimization of liver glycogen extraction when considering the fine molecular structure. Carbohydrate Polymers, 2021, 261, 117887.	5.1	6

#	Article	IF	CITATIONS
19	Molecular-structure evolution during in vitro fermentation of granular high-amylose wheat starch is different to in vitro digestion. Food Chemistry, 2021, 362, 130188.	4.2	15
20	Starch structure-property relations in Australian wild rices compared to domesticated rices. Carbohydrate Polymers, 2021, 271, 118412.	5.1	15
21	Starch molecular fine structure is associated with protein composition in chickpea seed. Carbohydrate Polymers, 2021, 272, 118489.	5.1	6
22	Late-maturity \hat{l}_{\pm} -amylase (LMA) testing and its methodological challenges. LWT - Food Science and Technology, 2021, 151, 112232.	2.5	3
23	Late-Maturity Alpha-Amylase in Wheat (Triticum aestivum) and Its Impact on Fresh White Sauce Qualities. Foods, 2021, 10, 201.	1.9	7
24	Understanding the Binding of Starch Fragments to Granule-Bound Starch Synthase. Biomacromolecules, 2021, 22, 4730-4737.	2.6	4
25	Malt protein inhibition of \hat{l}^2 -amylase alters starch molecular structure during barley mashing. Food Hydrocolloids, 2020, 100, 105423.	5.6	10
26	Some molecular structural features of glycogen in the kidneys of diabetic rats. Carbohydrate Polymers, 2020, 229, 115526.	5.1	3
27	Dendrobium officinale polysaccharide ameliorates diabetic hepatic glucose metabolism via glucagon-mediated signaling pathways and modifying liver-glycogen structure. Journal of Ethnopharmacology, 2020, 248, 112308.	2.0	91
28	The effects of the chain-length distributions of starch molecules on rheological and thermal properties of wheat flour paste. Food Hydrocolloids, 2020, 101, 105563.	5.6	44
29	New insights into amylose and amylopectin biosynthesis in rice endosperm. Carbohydrate Polymers, 2020, 230, 115656.	5.1	45
30	Metformin and Berberine suppress glycogenolysis by inhibiting glycogen phosphorylase and stabilizing the molecular structure of glycogen in db/db mice. Carbohydrate Polymers, 2020, 243, 116435.	5.1	12
31	Fecal microbiota responses to rice RS3 are specific to amylose molecular structure. Carbohydrate Polymers, 2020, 243, 116475.	5.1	52
32	High-amylose wheat starch: Structural basis for water absorption and pasting properties. Carbohydrate Polymers, 2020, 245, 116557.	5.1	61
33	Effects of fasting on liver glycogen structure in rats with type 2 diabetes. Carbohydrate Polymers, 2020, 237, 116144.	5.1	12
34	Effects of Nonstarch Genetic Modifications on Starch Structure and Properties. Foods, 2020, 9, 222.	1.9	6
35	Investigating cooked rice textural properties by instrumental measurements. Food Science and Human Wellness, 2020, 9, 130-135.	2.2	40
36	Using Molecular Fine Structure to Identify Optimal Methods of Extracting Starch. Starch/Staerke, 2020, 72, 1900214.	1.1	16

#	Article	IF	CITATIONS
37	The contribution of \hat{l}^2 -glucan and starch fine structure to texture of oat-fortified wheat noodles. Food Chemistry, 2020, 324, 126858.	4.2	28
38	Characterization of glycogen molecular structure in the worm Caenorhabditis elegans. Carbohydrate Polymers, 2020, 237, 116181.	5.1	11
39	Relations between digestibility and structures of pumpkin starches and pectins. Food Hydrocolloids, 2020, 106, 105894.	5.6	36
40	Effects of amylose and amylopectin fine structure on sugar-snap cookie dough rheology and cookie quality. Carbohydrate Polymers, 2020, 241, 116371.	5.1	40
41	A molecular explanation of wheat starch physicochemical properties related to noodle eating quality. Food Hydrocolloids, 2020, 108, 106035.	5.6	38
42	Using starch molecular fine structure to understand biosynthesis-structure-property relations. Trends in Food Science and Technology, 2019, 86, 530-536.	7.8	86
43	The size dependence of the average number of branches in amylose. Carbohydrate Polymers, 2019, 223, 115134.	5.1	17
44	Relationship between the molecular structure of duckweed starch and its in vitro enzymatic degradation kinetics. International Journal of Biological Macromolecules, 2019, 139, 244-251.	3.6	9
45	Influence of heat treatment on starch structure and physicochemical properties of oats. Journal of Cereal Science, 2019, 89, 102805.	1.8	17
46	The Role of Pullulanase in Starch Biosynthesis, Structure, and Thermal Properties by Studying Sorghum with Increased Pullulanase Activity. Starch/Staerke, 2019, 71, 1900072.	1.1	9
47	Characterizing the impact of starch and gluten-induced alterations on gelatinization behavior of physically modified model dough. Food Chemistry, 2019, 301, 125276.	4.2	10
48	Starch branching enzymes contributing to amylose and amylopectin fine structure in wheat. Carbohydrate Polymers, 2019, 224, 115185.	5.1	31
49	A more general approach to fitting digestion kinetics of starch in food. Carbohydrate Polymers, 2019, 225, 115244.	5.1	53
50	Glycogen structure in type 1 diabetic mice: Towards understanding the origin of diabetic glycogen molecular fragility. International Journal of Biological Macromolecules, 2019, 128, 665-672.	3 . 6	23
51	Altering starch branching enzymes in wheat generates high-amylose starch with novel molecular structure and functional properties. Food Hydrocolloids, 2019, 92, 51-59.	5 . 6	75
52	Starch structure-property relations as a function of barley germination times. International Journal of Biological Macromolecules, 2019, 136, 1125-1132.	3.6	17
53	Molecular Structure of Glycogen in <i>Escherichia coli</i> . Biomacromolecules, 2019, 20, 2821-2829.	2.6	27
54	Relations between changes in starch molecular fine structure and in thermal properties during rice grain storage. Food Chemistry, 2019, 295, 484-492.	4.2	48

#	Article	IF	CITATIONS
55	Distribution of short to medium amylose chains are major controllers of in vitro digestion of retrograded rice starch. Food Hydrocolloids, 2019, 96, 634-643.	5.6	137
56	High-amylose rice: Starch molecular structural features controlling cooked rice texture and preference. Carbohydrate Polymers, 2019, 219, 251-260.	5.1	117
57	Modification of retrogradation property of rice starch by improved extrusion cooking technology. Carbohydrate Polymers, 2019, 213, 192-198.	5.1	38
58	Molecular structure-property relations controlling mashing performance of amylases as a function of barley grain size. Amylase, 2019, 3, 1-18.	0.7	4
59	Effects of active ingredients from traditional Chinese medicines on glycogen molecular structure in diabetic mice. European Polymer Journal, 2019, 112, 67-72.	2.6	13
60	The role of thermostable proteinaceous α-amylase inhibitors in slowing starch digestion in pasta. Food Hydrocolloids, 2019, 90, 241-247.	5.6	49
61	Colloid chemistry approach to understand the storage stability of fermented carrot juice. Food Hydrocolloids, 2019, 89, 623-630.	5.6	20
62	Characterizing Starch Molecular Structure of Rice. Methods in Molecular Biology, 2019, 1892, 169-185.	0.4	4
63	Molecular brewing: Molecular structural effects involved in barley malting and mashing. Carbohydrate Polymers, 2019, 206, 583-592.	5.1	38
64	How amylose molecular fine structure of rice starch affects functional properties. Carbohydrate Polymers, 2019, 204, 24-31.	5.1	167
65	Competition between Granule Bound Starch Synthase and Starch Branching Enzyme in Starch Biosynthesis. Rice, 2019, 12, 96.	1.7	25
66	Diurnal changes of glycogen molecular structure in healthy and diabetic mice. Carbohydrate Polymers, 2018, 185, 145-152.	5.1	32
67	Starch molecular structure: The basis for an improved understanding of cooked rice texture. Carbohydrate Polymers, 2018, 195, 9-17.	5.1	182
68	Proteomic Investigation of the Binding Agent between Liver Glycogen \hat{l}^2 Particles. ACS Omega, 2018, 3, 3640-3645.	1.6	35
69	Mechanisms of utilisation of arabinoxylans by a porcine faecal inoculum: competition and co-operation. Scientific Reports, 2018, 8, 4546.	1.6	25
70	The adsorption of \hat{l} ±-amylase on barley proteins affects the in vitro digestion of starch in barley flour. Food Chemistry, 2018, 241, 493-501.	4.2	118
71	Mechanistic understanding of the relationships between molecular structure and emulsification properties of octenyl succinic anhydride (OSA) modified starches. Food Hydrocolloids, 2018, 74, 168-175.	5.6	48
72	Effects of the Starch Molecular Structures in Barley Malts and Rice Adjuncts on Brewing Performance. Fermentation, 2018, 4, 103.	1.4	33

#	Article	IF	CITATIONS
73	Improved methodology for analyzing relations between starch digestion kinetics and molecular structure. Food Chemistry, 2018, 264, 284-292.	4.2	87
74	Exploring glycogen biosynthesis through Monte Carlo simulation. International Journal of Biological Macromolecules, 2018, 116, 264-271.	3.6	17
75	Effects of pectin on molecular structural changes in starch during digestion. Food Hydrocolloids, 2017, 69, 10-18.	5.6	72
76	The molecular structural features controlling stickiness in cooked rice, a major palatability determinant. Scientific Reports, 2017, 7, 43713.	1.6	101
77	Implications for biological function of lobe dependence of the molecular structure of liver glycogen. European Polymer Journal, 2017, 90, 105-113.	2.6	9
78	Effect of pulsed electrical fields on the structural properties that affect french fry texture during processing. Trends in Food Science and Technology, 2017, 67, 1-11.	7.8	56
79	Molecular structures and properties of starches of Australian wild rice. Carbohydrate Polymers, 2017, 172, 213-222.	5.1	39
80	Molecular structural differences between maize leaf and endosperm starches. Carbohydrate Polymers, 2017, 161, 10-15.	5.1	13
81	Parameterizing amylose chain-length distributions for biosynthesis-structure-property relations. Analytical and Bioanalytical Chemistry, 2017, 409, 6813-6819.	1.9	84
82	On the Role of Catabolic Enzymes in Biosynthetic Models of Glycogen Molecular Weight Distributions. ACS Omega, 2017, 2, 5221-5227.	1.6	3
83	Physicochemical and structural properties of pregelatinized starch prepared by improved extrusion cooking technology. Carbohydrate Polymers, 2017, 175, 265-272.	5.1	138
84	Relationships between protein content, starch molecular structure and grain size in barley. Carbohydrate Polymers, 2017, 155, 271-279.	5.1	84
85	Recent progress toward understanding the role of starch biosynthetic enzymes in the cereal endosperm. Amylase, 2017, 1 , .	0.7	32
86	Molecular-size dependence of glycogen enzymatic degradation and its importance for diabetes. European Polymer Journal, 2016, 82, 175-180.	2.6	32
87	Amylopectin chain length distribution in grains of japonica rice as affected by nitrogen fertilizer and genotype. Journal of Cereal Science, 2016, 71, 230-238.	1.8	39
88	Compact structure and proteins of pasta retard in vitro digestive evolution of branched starch molecular structure. Carbohydrate Polymers, 2016, 152, 441-449.	5.1	75
89	A new non-degradative method to purify glycogen. Carbohydrate Polymers, 2016, 147, 165-170.	5.1	13
90	Structural characterizations and in vitro digestibility of acidâ€treated wrinkled and smooth pea starch (<i>Pisum sativum</i> L.). Starch/Staerke, 2016, 68, 762-770.	1.1	14

#	Article	IF	Citations
91	A broad-standard technique for correcting for band broadening in size-exclusion chromatography. Journal of Chromatography A, 2016, 1443, 267-271.	1.8	3
92	Instrumental measurement of cooked rice texture by dynamic rheological testing and its relation to the fine structure of rice starch. Carbohydrate Polymers, 2016, 146, 253-263.	5.1	108
93	Progress in controlling starch structure by modifying starch-branching enzymes. Planta, 2016, 243, 13-22.	1.6	41
94	Nanocomposites with functionalised polysaccharide nanocrystals through aqueous free radical polymerisation promoted by ozonolysis. Carbohydrate Polymers, 2016, 135, 256-266.	5.1	41
95	The importance of amylose and amylopectin fine structure for textural properties of cooked rice grains. Food Chemistry, 2016, 196, 702-711.	4.2	363
96	Relationships between amylopectin molecular structures andÂfunctional properties of different-sized fractions of normal andÂhigh-amylose maize starches. Food Hydrocolloids, 2016, 52, 359-368.	5.6	105
97	Molecular Structure of Human-Liver Glycogen. PLoS ONE, 2016, 11, e0150540.	1.1	29
98	The effects of variable nitrogen application on barley starch structure under drought stress. Journal of the Institute of Brewing, 2015, 121, 502-509.	0.8	39
99	Combined techniques for characterising pasta structure reveals how the gluten network slows enzymic digestion rate. Food Chemistry, 2015, 188, 559-568.	4.2	189
100	Improved understanding of rice amylose biosynthesis from advanced starch structural characterization. Rice, 2015, 8, 55.	1.7	29
101	Biodegradation of starch films: The roles of molecular and crystalline structure. Carbohydrate Polymers, 2015, 122, 115-122.	5.1	54
102	Drought-proofing barley (<i>Hordeum vulgare</i>) and its impact on grain quality: A review. Journal of the Institute of Brewing, 2015, 121, 19-27.	0.8	24
103	Diurnal changes in Sorghum leaf starch molecular structure. Plant Science, 2015, 239, 147-154.	1.7	29
104	The biosynthesis, structure and gelatinization properties of starches from wild and cultivated African rice species (Oryza barthii and Oryza glaberrima). Carbohydrate Polymers, 2015, 129, 92-100.	5.1	75
105	Binding of Starch Fragments to the Starch Branching Enzyme: Implications for Developing Slower-Digesting Starch. Biomacromolecules, 2015, 16, 2475-2481.	2.6	6
106	Characterization of the time evolution of starch structure from rice callus. Carbohydrate Polymers, 2015, 127, 116-123.	5.1	12
107	Roles of GBSSI and SSIIa in determining amylose fine structure. Carbohydrate Polymers, 2015, 127, 264-274.	5.1	59
108	Molecular structure of glycogen in diabetic liver. Glycoconjugate Journal, 2015, 32, 113-118.	1.4	46

#	Article	IF	CITATIONS
109	The Mechanism for Stopping Chain and Total-Molecule Growth in Complex Branched Polymers, Exemplified by Glycogen. Biomacromolecules, 2015, 16, 1870-1872.	2.6	21
110	SEC Analysis of Poly(Acrylic Acid) and Poly(Methacrylic Acid). Macromolecular Chemistry and Physics, 2015, 216, 23-37.	1.1	46
111	A rapid extraction method for glycogen from formalin-fixed liver. Carbohydrate Polymers, 2015, 118, 9-15.	5.1	26
112	Establishing whether the structural feature controlling the mechanical properties of starch films is molecular or crystalline. Carbohydrate Polymers, 2015, 117, 262-270.	5.1	28
113	Acid Hydrolysis and Molecular Density of Phytoglycogen and Liver Glycogen Helps Understand the Bonding in Glycogen α (Composite) Particles. PLoS ONE, 2015, 10, e0121337.	1.1	44
114	The Characterization of Modified Starch Branching Enzymes: Toward the Control of Starch Chain-Length Distributions. PLoS ONE, 2015, 10, e0125507.	1.1	20
115	Impairment of Liver Glycogen Storage in the db/db Animal Model of Type 2 Diabetes: A Potential Target for Future Therapeutics?. Current Drug Targets, 2015, 16, 1088-1093.	1.0	21
116	New Perspectives on the Role of \hat{l}_{\pm} - and \hat{l}^2 -Amylases in Transient Starch Synthesis. PLoS ONE, 2014, 9, e100498.	1.1	25
117	Effects of Rice Variety and Growth Location in Cambodia on Grain Composition and Starch Structure. Rice Science, 2014, 21, 47-58.	1.7	14
118	Changes in Glycogen Structure over Feeding Cycle Sheds New Light on Blood-Glucose Control. Biomacromolecules, 2014, 15, 660-665.	2.6	45
119	Structural Changes of Starch Molecules in Barley Grains During Germination. Cereal Chemistry, 2014, 91, 431-437.	1.1	27
120	Exploring extraction/dissolution procedures for analysis of starch chain-length distributions. Carbohydrate Polymers, 2014, 114, 36-42.	5.1	169
121	Variation in Amylose Fine Structure of Starches from Different Botanical Sources. Journal of Agricultural and Food Chemistry, 2014, 62, 4443-4453.	2.4	134
122	Two-dimensional macromolecular distributions reveal detailed architectural features in high-amylose starches. Carbohydrate Polymers, 2014, 113, 539-551.	5.1	43
123	Causal Relations Among Starch Biosynthesis, Structure, and Properties. Springer Science Reviews, 2014, 2, 15-33.	1.3	49
124	Causal Relations between Structural Features of Amylopectin, a Semicrystalline Hyperbranched Polymer. Biomacromolecules, 2014, 15, 2501-2511.	2.6	33
125	Shear degradation of molecular, crystalline, and granular structures of starch during extrusion. Starch/Staerke, 2014, 66, 595-605.	1.1	109
126	Aggregate and emulsion properties of enzymatically-modified octenylsuccinylated waxy starches. Carbohydrate Polymers, 2014, 111, 918-927.	5.1	21

#	Article	IF	Citations
127	Improving size-exclusion chromatography separation for glycogen. Journal of Chromatography A, 2014, 1332, 21-29.	1.8	32
128	Extraction, isolation and characterisation of phytoglycogen from su-1 maize leaves and grain. Carbohydrate Polymers, 2014, 101, 423-431.	5.1	38
129	Pea starch (Pisum sativum L.) with slow digestion property produced using \hat{l}^2 -amylase and transglucosidase. Food Chemistry, 2014, 164, 317-323.	4.2	41
130	Structures of octenylsuccinylated starches: Effects on emulsions containing \hat{l}^2 -carotene. Carbohydrate Polymers, 2014, 112, 85-93.	5.1	42
131	The Molecular Size Distribution of Glycogen and its Relevance to Diabetes. Australian Journal of Chemistry, 2014, 67, 538.	0.5	15
132	Improving human health through understanding the complex structure of glucose polymers. Analytical and Bioanalytical Chemistry, 2013, 405, 8969-8980.	1.9	38
133	Molecular structure of starch in grains is not affected by common dwarfing genes in rice (<i>sd1</i>) and sorghum (<i>dw3</i>). Starch/Staerke, 2013, 65, 822-830.	1.1	3
134	Barley genotype expressing "stay-green―like characteristics maintains starch quality of the grain during water stress condition. Journal of Cereal Science, 2013, 58, 414-419.	1.8	38
135	Structure and physicochemical properties of octenyl succinic anhydride modified starches: A review. Carbohydrate Polymers, 2013, 92, 905-920.	5.1	484
136	The importance of amylose and amylopectin fine structures for starch digestibility in cooked rice grains. Food Chemistry, 2013, 136, 742-749.	4.2	287
137	Effect of octenylsuccinic anhydride modification on \hat{l}^2 -amylolysis of starch. Carbohydrate Polymers, 2013, 97, 9-17.	5.1	30
138	The influence of macromolecular architecture on the critical aggregation concentration of large amphiphilic starch derivatives. Food Hydrocolloids, 2013, 31, 365-374.	5.6	47
139	Insights into Sorghum Starch Biosynthesis from Structure Changes Induced by Different Growth Temperatures. Cereal Chemistry, 2013, 90, 223-230.	1.1	24
140	Characterization Methods for Starch-Based Materials: State of the Art and Perspectives. Australian Journal of Chemistry, 2013, 66, 1550.	0.5	56
141	What Is Being Learned About Starch Properties from Multiple‣evel Characterization. Cereal Chemistry, 2013, 90, 312-325.	1.1	59
142	A Parameterized Model of Amylopectin Synthesis Provides Key Insights into the Synthesis of Granular Starch. PLoS ONE, 2013, 8, e65768.	1.1	126
143	Household Rice Choice and Consumption Behavior Across Agro-Climatic Zones of Cambodia. Journal of Hunger and Environmental Nutrition, 2012, 7, 333-346.	1.1	12
144	Molecular Insights into Glycogen α-Particle Formation. Biomacromolecules, 2012, 13, 3805-3813.	2.6	42

#	Article	IF	Citations
145	Relations between Molecular, Crystalline, and Lamellar Structures of Amylopectin. Biomacromolecules, 2012, 13, 4273-4282.	2.6	124
146	The structure of cardiac glycogen in healthy mice. International Journal of Biological Macromolecules, 2012, 51, 887-891.	3 . 6	36
147	Amylose content in starches: Toward optimal definition and validating experimental methods. Carbohydrate Polymers, 2012, 88, 103-111.	5.1	196
148	Kinetic analysis of bile salt passage across a dialysis membrane in the presence of cereal soluble dietary fibre polymers. Food Chemistry, 2012, 134, 2007-2013.	4.2	29
149	Milling of Rice Grains. The Degradation on Three Structural Levels of Starch in Rice Flour Can Be Independently Controlled during Grinding. Journal of Agricultural and Food Chemistry, 2011, 59, 3964-3973.	2.4	144
150	New ¹ H NMR Procedure for the Characterization of Native and Modified Food-Grade Starches. Journal of Agricultural and Food Chemistry, 2011, 59, 6913-6919.	2.4	169
151	Molecular Structural Differences between Type-2-Diabetic and Healthy Glycogen. Biomacromolecules, 2011, 12, 1983-1986.	2.6	43
152	Effect of a gibberellin-biosynthesis inhibitor treatment on the physicochemical properties of sorghum starch. Journal of Cereal Science, 2011, 53, 328-334.	1.8	51
153	Diffusion and rheology characteristics of barley mixed linkage \hat{l}^2 -glucan and possible implications for digestion. Carbohydrate Polymers, 2011, 86, 1732-1738.	5.1	45
154	Size-separation characterization of starch and glycogen for biosynthesis–structure–property relationships. Analytical and Bioanalytical Chemistry, 2011, 399, 1425-1438.	1.9	48
155	Starch granule characterization by kinetic analysis of their stages during enzymic hydrolysis: 1H nuclear magnetic resonance studies. Carbohydrate Polymers, 2011, 83, 1775-1786.	5.1	17
156	Analytical methodology for multidimensional size/branch-length distributions for branched glucose polymers using off-line 2-dimensional size-exclusion chromatography and enzymatic treatment. Journal of Chromatography A, 2011, 1218, 4434-4444.	1.8	23
157	Rate coefficients for enzyme-catalyzed reactions from molecular weight distributions. Polymer, 2011, 52, 1490-1494.	1.8	8
158	Metal Binding by Water-Soluble Polychelates and Implications for Agriculture. Australian Journal of Chemistry, 2011, 64, 1593.	0.5	1
159	Accelerated testing of nutrient release rates from fertiliser granules. Soil Research, 2010, 48, 668.	0.6	1
160	Characterization of branched polysaccharides using multipleâ€detection size separation techniques. Journal of Separation Science, 2010, 33, 3537-3554.	1.3	212
161	Mechanistic study of the formation of amphiphilic core–shell particles by grafting methyl methacrylate from polyethylenimine through emulsion polymerization. Polymer, 2010, 51, 3512-3519.	1.8	29
162	Using chain-length distributions to diagnose genetic diversity in starch biosynthesis. Carbohydrate Polymers, 2010, 81, 120-127.	5.1	21

#	Article	IF	Citations
163	Reliable measurements of the size distributions of starch molecules in solution: Current dilemmas and recommendations. Carbohydrate Polymers, 2010, 79, 255-261.	5.1	126
164	Digestion of starch: In vivo and in vitro kinetic models used to characterise oligosaccharide or glucose release. Carbohydrate Polymers, 2010, 80, 599-617.	5.1	296
165	Structural differences between hot-water-soluble and hot-water-insoluble fractions of starch in waxy rice (Oryza sativa L.). Carbohydrate Polymers, 2010, 81, 524-532.	5.1	32
166	Diffusion and viscosity in arabinoxylan solutions: Implications for nutrition. Carbohydrate Polymers, 2010, 82, 46-53.	5.1	63
167	Two-Dimensional Size/Branch Length Distributions of a Branched Polymer. Macromolecules, 2010, 43, 7321-7329.	2.2	159
168	In Vivo and In Vitro Starch Digestion: Are Current in Vitro Techniques Adequate?. Biomacromolecules, 2010, 11, 3600-3608.	2.6	127
169	Mechanism of Degradation of Starch, a Highly Branched Polymer, during Extrusion. Macromolecules, 2010, 43, 2855-2864.	2.2	227
170	Starch Digestion Mechanistic Information from the Time Evolution of Molecular Size Distributions. Journal of Agricultural and Food Chemistry, 2010, 58, 8444-8452.	2.4	78
171	Molecular Weight Distributions of Starch Branches Reveal Genetic Constraints on Biosynthesis. Biomacromolecules, 2010, 11, 3539-3547.	2.6	94
172	Nature of \hat{l}_{\pm} and \hat{l}^{2} Particles in Glycogen Using Molecular Size Distributions. Biomacromolecules, 2010, 11, 1094-1100.	2.6	72
173	Effect of particle size on kinetics of starch digestion in milled barley and sorghum grains by porcine alpha-amylase. Journal of Cereal Science, 2009, 50, 198-204.	1.8	218
174	Assessment of the Extent of Starch Dissolution in Dimethyl Sulfoxide by ¹ H NMR Spectroscopy. Macromolecular Bioscience, 2009, 9, 506-514.	2.1	91
175	The effect of copolymer composition on the surface properties of perfluoroalkylethyl acrylates. Journal of Applied Polymer Science, 2009, 114, 4020-4029.	1.3	11
176	Synthesis and characterization of synthetic polymer colloids colloidally stabilized by cationized starch oligomers. Journal of Polymer Science Part A, 2009, 47, 1836-1852.	2.5	25
177	General description of the structure of branched polymers. Journal of Polymer Science Part A, 2009, 47, 3914-3930.	2.5	35
178	Controlled/living radical polymerization of isoprene and butadiene in emulsion. European Polymer Journal, 2009, 45, 3149-3163.	2.6	43
179	Kinetics of In Vitro Digestion of Starches Monitored by Time-Resolved1H Nuclear Magnetic Resonance. Biomacromolecules, 2009, 10, 638-644.	2.6	23
180	Extracting Physically Useful Information from Multiple-Detection Size-Separation Data for Starch. Biomacromolecules, 2009, 10, 2708-2713.	2.6	13

#	Article	IF	CITATIONS
181	Characterization of Starch by Size-Exclusion Chromatography: The Limitations Imposed by Shear Scission. Biomacromolecules, 2009, 10, 2245-2253.	2.6	308
182	Synthesis of methacrylate derivatives oligomers by dithiobenzoateâ€RAFTâ€mediated polymerization. Journal of Polymer Science Part A, 2008, 46, 2277-2289.	2.5	37
183	Perfluorinated coatings and terracotta: An impregnation study. Journal of Applied Polymer Science, 2008, 110, 663-677.	1.3	3
184	Toward a full characterization of native starch: Separation and detection by size-exclusion chromatography. Journal of Chromatography A, 2008, 1205, 60-70.	1.8	43
185	Separation of complex branched polymers by size-exclusion chromatography probed with multiple detection. Journal of Chromatography A, 2008, 1190, 215-223.	1.8	77
186	Water vapour transmission in butadiene–MMA–methacrylic acid latex films. European Polymer Journal, 2008, 44, 342-356.	2.6	1
187	Mechanistic Investigation of a Starch-Branching Enzyme Using Hydrodynamic Volume SEC Analysis. Biomacromolecules, 2008, 9, 954-965.	2.6	67
188	Transfer to "Monomer―in Styrene Free-Radical Polymerization. Macromolecules, 2008, 41, 4528-4530.	2.2	9
189	Particle Size Distributions in Electrosterically Stabilized Emulsion Polymerization Systems: Testing the "Mid-Chain-Radical―Hypothesis. Macromolecules, 2008, 41, 3521-3529.	2.2	17
190	Interpreting Size-Exclusion Data for Highly Branched Biopolymers by Reverse Monte Carlo Simulations. Biomacromolecules, 2007, 8, 455-463.	2.6	17
191	Extended Mechanistic Description of Particle Growth in Electrosterically Stabilized Emulsion Polymerization Systems. Macromolecules, 2007, 40, 4710-4720.	2.2	34
192	Toward a More General Solution to the Band-Broadening Problem in Size Separation of Polymers. Macromolecules, 2007, 40, 3477-3487.	2.2	33
193	Grafting of Oligosaccharides onto Synthetic Polymer Colloids. Biomacromolecules, 2007, 8, 1816-1823.	2.6	24
194	Determination of the Propagation Rate Coefficient of Vinyl Pivalate Based on EPR Quantification of the Propagating Radical Concentration. Macromolecular Chemistry and Physics, 2007, 208, 2403-2411.	1,1	15
195	Theory of Multiple-Detection Size-Exclusion Chromatography of Complex Branched Polymers. Macromolecular Theory and Simulations, 2007, 16, 13-28.	0.6	93
196	Photo-initiated polymerization of acrylamide in water. Polymer, 2007, 48, 4733-4741.	1.8	28
197	Emulsion polymerization: State of the art in kinetics and mechanisms. Polymer, 2007, 48, 6965-6991.	1.8	350
198	Molecular weight distributions from size separation data for hyperbranched polymers. Journal of Polymer Science Part A, 2007, 45, 3112-3115.	2.5	24

#	Article	IF	CITATIONS
199	Starchâ€ <i>graft</i> ê(synthetic copolymer) latexes initiated with Ce ⁴⁺ and stabilized by amylopectin. Journal of Polymer Science Part A, 2007, 45, 4185-4192.	2.5	36
200	Randomly Hyperbranched Polymers. Physical Review Letters, 2007, 98, 238301.	2.9	39
201	A new NMR method for directly monitoring and quantifying the dissolution kinetics of starch in DMSO. Carbohydrate Research, 2007, 342, 2604-2610.	1.1	43
202	Thermal and viscoelastic structure–property relationships of model comb-like poly(n-butyl) Tj ETQq0 0 0 rgBT	/Overlock 1.8	10 ₈ Tf 50 622
203	Synthesis of Anisotropic Nanoparticles by Seeded Emulsion Polymerization. Langmuir, 2006, 22, 4037-4043.	1.6	263
204	Particle Formation by Self-Assembly in Controlled Radical Emulsion Polymerizations. Macromolecules, 2006, 39, 4256-4258.	2.2	17
205	Mechanism of Radical Entry in Electrosterically Stabilized Emulsion Polymerization Systems. Macromolecules, 2006, 39, 6495-6504.	2.2	40
206	Fluorescence Recovery after Photobleaching as a Probe of Diffusion in Starch Systems. Biomacromolecules, 2006, 7, 521-530.	2.6	33
207	Rate-Controlling Events for Radical Exit in Electrosterically Stabilized Emulsion Polymerization Systems. Macromolecules, 2006, 39, 2081-2091.	2.2	29
208	Improved Methods for the Structural Analysis of the Amylose-Rich Fraction from Rice Flour. Biomacromolecules, 2006, 7, 866-876.	2.6	81
209	Controlled Radical Polymerization in Aqueous Dispersed Media. Australian Journal of Chemistry, 2006, 59, 693.	0.5	123
210	Structure - Property and Structure - Function Relations of Leafhopper (Kahaono montana) Silk. Australian Journal of Chemistry, 2006, 59, 579.	0.5	6
211	Starch-graft-copolymer latexes initiated and stabilized by ozonolyzed amylopectin. Journal of Polymer Science Part A, 2006, 44, 5832-5845.	2.5	30
212	The dissociation rate coefficient of persulfate in emulsion polymerization systems. Polymer, 2006, 47, 4667-4675.	1.8	21
213	The influence of copolymerization with methacrylic acid on poly(butyl acrylate) film properties. Polymer, 2006, 47, 1159-1165.	1.8	16
214	High-Resolution Separation of Oligo(acrylic acid) by Capillary Zone Electrophoresis. Macromolecular Rapid Communications, 2006, 27, 42-46.	2.0	22
215	Rate Optimization in Controlled Radical Emulsion Polymerization Using RAFT. Macromolecular Theory and Simulations, 2006, 15, 70-86.	0.6	44
216	Molecular Watchmaking:ab initio Emulsion Polymerization by RAFT-controlled Self-assembly. Macromolecular Symposia, 2005, 231, 84-93.	0.4	62

#	Article	IF	Citations
217	A Method for Preparing Low-Allergen Natural Rubber Latex. Australian Journal of Chemistry, 2005, 58, 461.	0.5	5
218	Poly(dimethylaminoethyl methacrylate) grafted natural rubber from seeded emulsion polymerization. Polymer, 2005, 46, 1105-1111.	1.8	41
219	A new silk: Mechanical, compositional, and morphological characterization of leafhopper (Kahaono) Tj ETQq $1\ 1$	0.784314 1.8	rgBT/Overlo
220	Termination rate coefficients for acrylamide in the aqueous phase at low conversion. Polymer, 2005, 46, 9562-9573.	1.8	14
221	Analysis of shear-induced coagulation in an emulsion polymerisation reactor using computational fluid dynamics. Chemical Engineering Science, 2005, 60, 2005-2015.	1.9	16
222	Effect of surfactants used for binder synthesis on the properties of latex paints. Progress in Organic Coatings, 2005, 53, 112-118.	1.9	70
223	Modification of Natural Rubber by Grafting with Hydrophilic Vinyl Monomers. Macromolecular Chemistry and Physics, 2005, 206, 2450-2460.	1.1	61
224	A critical evaluation of reaction calorimetry for the study of emulsion polymerization systems: thermodynamic and kinetic aspects. Polymer, 2005, 46, 285-294.	1.8	15
225	Radical entry mechanisms in redox-initiated emulsion polymerizations. Polymer, 2005, 46, 7874-7895.	1.8	28
226	Average termination rate coefficients in emulsion polymerization: Effect of compartmentalization on free-radical lifetimes. Journal of Polymer Science Part A, 2005, 43, 1076-1089.	2.5	30
227	Pulsed laser polymerization study of the propagation kinetics of acrylamide in water. Journal of Polymer Science Part A, 2005, 43, 1357-1368.	2.5	83
228	Radical Loss in RAFT-Mediated Emulsion Polymerizations. Macromolecules, 2005, 38, 4901-4912.	2.2	61
229	Mechanistic Information from Analysis of Molecular Weight Distributions of Starch. Biomacromolecules, 2005, 6, 2248-2259.	2.6	109
230	Measurement of the Molecular Weight Distribution of Debranched Starch. Biomacromolecules, 2005, 6, 2260-2270.	2.6	94
231	Molecular Weight Distributions and Chain-Stopping Events in the Free-Radical Polymerization of Methyl Methacrylate. Macromolecules, 2005, 38, 3214-3224.	2.2	44
232	Midchain Transfer to Polymer in Styreneâ-'Poly(butyl acrylate) Systems:Â Direct Evidence of Retardative Effects. Macromolecules, 2005, 38, 9894-9896.	2,2	15
233	General Solution to the Band-Broadening Problem in Polymer Molecular Weight Distributions. Australian Journal of Chemistry, 2005, 58, 178.	0.5	35
234	Catalytic Insertion Polymerization of Norbornene in Miniemulsion. Macromolecules, 2005, 38, 6796-6805.	2.2	32

#	Article	IF	Citations
235	Ab Initio Emulsion Polymerization by RAFT-Controlled Self-Assembly. Macromolecules, 2005, 38, 2191-2204.	2.2	592
236	Synthesis and Structure - Property Relations of Latexes Containing Graft Copolymers between Telechelic Polybutadiene and Dodecyl Methacrylate. Australian Journal of Chemistry, 2004, 57, 765.	0.5	0
237	Synthesis and cross-linking of polyisoprene latexes. Polymer, 2004, 45, 769-781.	1.8	25
238	Propagation rate coefficient of acrylic acid: theoretical investigation of the solvent effect. Polymer, 2004, 45, 6993-6999.	1.8	57
239	Grafting of dodecyl methacrylate onto hydroxylated polybutadiene by miniemulsion polymerization. Journal of Polymer Science Part A, 2004, 42, 3404-3416.	2.5	8
240	Effect of surfactant systems on the water sensitivity of latex films. Journal of Applied Polymer Science, 2004, 92, 1813-1823.	1.3	49
241	Critically Evaluated Rate Coefficients for Free-Radical Polymerization, 5,. Macromolecular Chemistry and Physics, 2004, 205, 2151-2160.	1.1	360
242	Cryo-sectioning and chemical-fixing ultramicrotomy techniques for imaging rubber latex particle morphology. Microscopy Research and Technique, 2004, 63, 111-114.	1.2	12
243	First-principles calculation of particle formation in emulsion polymerization: pseudo-bulk systems. Polymer, 2004, 45, 3595-3608.	1.8	56
244	Kinetics of surface grafting on polyisoprene latexes by reaction calorimetry. Polymer, 2004, 45, 5775-5784.	1.8	19
245	Synthesis and properties of composites of starch and chemically modified natural rubber. Polymer, 2004, 45, 7813-7820.	1.8	83
246	Synthesis of Comblike Poly(butyl methacrylate) Using Reversible Additionâ^'Fragmentation Chain Transfer and an Activated Ester. Macromolecules, 2004, 37, 2371-2382.	2.2	55
247	Critically Evaluated Rate Coefficients for Free-Radical Polymerization, 4. Macromolecular Chemistry and Physics, 2003, 204, 1338-1350.	1.1	130
248	Synthesis of latices with hydrophobic cores and poly(vinyl acetate) shells. 2. Use of poly(vinyl) Tj ETQq0 0 0 rgBT	/Qverlock	197f 50 222
249	Latex particles bearing hydrophilic grafted hairs with controlled chain length and functionality synthesized by reversible addition-fragmentation chain transfer. Journal of Polymer Science Part A, 2003, 41, 1188-1195.	2.5	39
250	Diffusion coefficients of the monomer and oligomers in hydroxyethyl methacrylate. Journal of Polymer Science Part A, 2003, 41, 2491-2501.	2.5	25
251	Characterization of electrosterically stabilized polystyrene latex; implications for radical entry kinetics. Polymer, 2003, 44, 4411-4420.	1.8	17
252	Water Sensitivity of Latex-Based Films. Industrial & Engineering Chemistry Research, 2003, 42, 456-464.	1.8	16

#	Article	IF	Citations
253	A Kinetic Investigation of Seeded Emulsion Polymerization of Styrene Using Reversible Additionâ^'Fragmentation Chain Transfer (RAFT) Agents with a Low Transfer Constant. Macromolecules, 2003, 36, 4309-4318.	2.2	82
254	Molecular Weight and Functional End Group Control by RAFT Polymerization of a Bisubstituted Acrylamide Derivative. Macromolecules, 2003, 36, 621-629.	2.2	110
255	Entry in Emulsion Polymerization:Â Effects of Initiator and Particle Surface Charge. Macromolecules, 2003, 36, 3921-3931.	2.2	59
256	Emulsion Polymerization of Vinylneo-Decanoate, a "Water-Insoluble―Monomer. Macromolecules, 2002, 35, 8371-8377.	2.2	18
257	Effective ab Initio Emulsion Polymerization under RAFT Control. Macromolecules, 2002, 35, 9243-9245.	2.2	394
258	Successful Use of RAFT Techniques in Seeded Emulsion Polymerization of Styrene:  Living Character, RAFT Agent Transport, and Rate of Polymerization. Macromolecules, 2002, 35, 5417-5425.	2.2	155
259	Maximum Achievable Particle Size in Emulsion Polymerization: Modeling of Large Particle Sizes. Macromolecular Theory and Simulations, 2002, 11 , 163 - 170 .	0.6	14
260	Critically Evaluated Termination Rate Coefficients for Free-Radical Polymerization, 1. Macromolecular Chemistry and Physics, 2002, 203, 2570-2582.	1.1	178
261	Structure-property relationships in modified natural rubber latexes grafted with methyl methacrylate and vinylneo-decanoate. Journal of Polymer Science Part A, 2002, 40, 809-822.	2.5	31
262	Effect of branching and molecular weight on the viscoelastic properties of poly(butyl acrylate). Journal of Polymer Science Part A, 2002, 40, 3335-3349.	2.5	43
263	Modelling secondary particle formation in emulsion polymerisation: application to making core–shell morphologies. Polymer, 2002, 43, 4557-4570.	1.8	46
264	Synthesis of latices with polystyrene cores and poly(vinyl acetate) shells. 1. Use of polystyrene seeds. Polymer, 2002, 43, 6371-6382.	1.8	51
265	Rational design of polymer colloids. Macromolecular Symposia, 2001, 174, 13-28.	0.4	10
266	Modification of Natural and Artificial Polymer Colloids by "Topology-Controlled―Emulsion Polymerization. Biomacromolecules, 2001, 2, 518-525.	2.6	54
267	Spontaneous Polymerization in the Emulsion Polymerization of Styrene and Chlorobutadiene. Macromolecules, 2001, 34, 5158-5168.	2.2	31
268	Induced decomposition of persulfate by vinyl acetate. Polymer, 2001, 42, 7999-8005.	1.8	8
269	Pulsed-laser polymerization-gel permeation chromatographic determination of the propagation-rate coefficient for the methyl acrylate dimer: A sterically hindered monomer. Journal of Polymer Science Part A, 2001, 39, 3902-3915.	2.5	33
270	Novel graft copolymers from mechanistically-designed seeded emulsion polymerization. Macromolecular Symposia, 2000, 152, 43-53.	0.4	10

#	Article	IF	CITATIONS
271	Pulsed-laser polymerization (PLP) of N-isopropyl acrylamide (NIPAM) in water: a qualitative study. Macromolecular Symposia, 2000, 150, 275-281.	0.4	15
272	Critically evaluated rate coefficients for free-radical polymerization, 3. Propagation rate coefficients for alkyl methacrylates. Macromolecular Chemistry and Physics, 2000, 201, 1355-1364.	1.1	274
273	Electrosteric Stabilization with Poly(Acrylic) Acid in Emulsion Polymerization:  Effect on Kinetics and Secondary Particle Formation. Macromolecules, 2000, 33, 6693-6703.	2.2	71
274	Grafting Kinetics of Vinyl Neodecanoate onto Polybutadiene. Macromolecules, 2000, 33, 2383-2390.	2.2	14
275	Molecular Weight Characterization of Poly(N-isopropylacrylamide) Prepared by Living Free-Radical Polymerization. Macromolecules, 2000, 33, 6738-6745.	2.2	331
276	Using mechanisms to make seemingly impossible latexes and polymers. Macromolecular Symposia, 2000, 150, 73-84.	0.4	15
277	Polymerization of acrylamide in solution and inverse emulsion: number molecular weight distribution with chain transfer agent. Polymer, 1999, 40, 3101-3106.	1.8	33
278	E.s.r. measurements of the propagation rate coefficient for styrene free radical polymerisation. Polymer, 1998, 39, 2305-2313.	1.8	34
279	Modelling particle size distributions and secondary particle formation in emulsion polymerisation. Polymer, 1998, 39, 7099-7112.	1.8	119
280	Measurement of Transfer Constant for Butyl Acrylate Free-Radical Polymerization. Macromolecules, 1998, 31, 4410-4418.	2.2	139
281	A Theoretical Study of Propagation Rate Coefficients for Methacrylonitrile and Acrylonitrile. Macromolecules, 1998, 31, 5175-5187.	2.2	52
282	Chain Transfer to Monomer in the Free-Radical Polymerizations of Methyl Methacrylate, Styrene, and α-Methylstyrene. Macromolecules, 1998, 31, 994-999.	2.2	77
283	Termination Rate Coefficients from Molecular Weight Distributions. ACS Symposium Series, 1998, , 104-119.	0.5	15
284	Measurement of Diffusion Coefficients of Oligomeric Penetrants in Rubbery Polymer Matrixes. Macromolecules, 1998, 31, 7835-7844.	2.2	110
285	Molecular Weight Distributions in Free-Radical Polymerizations. 2. Low-Conversion Bulk Polymerization. Macromolecules, 1997, 30, 1935-1946.	2.2	44
286	Propagation Rate Coefficient of Vinylneo-Decanoate by Pulsed Laser Polymerization. Macromolecules, 1997, 30, 3775-3780.	2.2	19
287	Emulsion Polymerization in a Hybrid Carbon Dioxide/Aqueous Medium. Macromolecules, 1997, 30, 6015-6023.	2.2	23
288	Catalytic Chain Transfer in Miniemulsion Polymerization. Macromolecules, 1997, 30, 7661-7666.	2.2	37

#	Article	IF	Citations
289	Particle Size Distributions., 1997,, 67-78.		4
290	Penultimate Unit Effect in Free-Radical Copolymerization. Macromolecules, 1997, 30, 726-736.	2.2	68
291	Critically evaluated rate coefficients for free-radical polymerization, 2 Propagation rate coefficients for methyl methacrylate. Macromolecular Chemistry and Physics, 1997, 198, 1545-1560.	1.1	524
292	Catalytic chain transfer for molecular weight control in the emulsion homo- and copolymerizations of methyl methacrylate and butyl methacrylate. Journal of Polymer Science Part A, 1997, 35, 859-878.	2.5	48
293	An experimental investigation on the evolution of the molecular weight distribution in styrene emulsion polymerization. Journal of Polymer Science Part A, 1997, 35, 989-1006.	2.5	21
294	Polymerization at High Conversion. , 1997, , 97-107.		7
295	Effects of Poly(acrylic acid) Electrosteric Stabilizer on Entry and Exit in Emulsion Polymerization. Macromolecules, 1996, 29, 5128-5135.	2.2	66
296	Pulsed-Laser Polymerization Measurements of the Propagation Rate Coefficient for Butyl Acrylate. Macromolecules, 1996, 29, 1918-1927.	2.2	140
297	Exit in the Emulsion Polymerization of Vinyl Acetate. Macromolecules, 1996, 29, 8666-8669.	2.2	18
298	Determination of Arrhenius Parameters for Propagation in Free-Radical Polymerizations:  An Assessment of ab Initio Procedures. The Journal of Physical Chemistry, 1996, 100, 18997-19006.	2.9	95
299	Firstâ€principles prediction and interpretation of propagation and transfer rate coefficients. Macromolecular Symposia, 1996, 111, 147-157.	0.4	33
300	Transfer constants from complete molecular weight distributions. Macromolecular Chemistry and Physics, 1996, 197, 403-412.	1.1	44
301	Determination of transfer constants of non-ionic thiolended surfactants (transurfs) in styrene free-radical polymerizations. Macromolecular Chemistry and Physics, 1996, 197, 1835-1840.	1.1	8
302	Critically evaluated rate coefficients for free-radical polymerization, 1. Propagation rate coefficient for styrene. Macromolecular Chemistry and Physics, 1995, 196, 3267-3280.	1.1	617
303	Classical trajectory studies of the reaction CH4+H→CH3+H2. Journal of Chemical Physics, 1995, 102, 5669-5682.	1.2	157
304	The application of transition state theory to gas–surface reactions in Langmuir systems. Journal of Chemical Physics, 1995, 102, 3461-3473.	1.2	13
305	Conditions for secondary particle formation in emulsion polymerization systems. Macromolecular Symposia, 1995, 92, 13-30.	0.4	42
306	Trajectory simulations of collisional energy transfer in highly excited benzene and hexafluorobenzene. Journal of Chemical Physics, 1995, 103, 626-641.	1.2	180

#	Article	IF	CITATIONS
307	A Priori Prediction of Propagation Rate Coefficients in Free-Radical Polymerizations: Propagation of Ethylene. Macromolecules, 1995, 28, 8771-8781.	2.2	205
308	Rate-Determining Kinetic Mechanisms in the Seeded Emulsion Copolymerization of Styrene and Methyl Acrylate. Macromolecules, 1995, 28, 34-49.	2.2	28
309	Molecular Weight Distributions in Free-Radical Polymerizations. 1. Model Development and Implications for Data Interpretation. Macromolecules, 1995, 28, 552-569.	2.2	215
310	Chain-Length-Dependent Termination Rate Processes in Free-Radical Polymerizations. 3. Styrene Polymerizations with and without Added Inert Diluent as an Experimental Test of Model. Macromolecules, 1995, 28, 3637-3649.	2.2	52
311	Free radical exit in emulsion polymerization. I. Theoretical model. Journal of Polymer Science Part A, 1994, 32, 605-630.	2.5	54
312	Free radical exit in emulsion polymerization. II. Model discrimination via experiment. Journal of Polymer Science Part A, 1994, 32, 631-649.	2.5	50
313	Particle growth in butadiene emulsion polymerization, 2. Gamma radiolysis. Macromolecular Chemistry and Physics, 1994, 195, 635-640.	1.1	12
314	Electron paramagnetic resonance investigation of the nature of the propagating species in methyl methacrylate polymerization. Macromolecular Chemistry and Physics, 1994, 195, 3159-3172.	1.1	26
315	Improved method for fitting falloff data. International Journal of Chemical Kinetics, 1994, 26, 273-281.	1.0	8
316	Gorin Models for Simple-Fission Transition States in the Gas Phase. , 1994, , 147-192.		1
317	Pulsed laser study of the propagation kinetics of tert-butyl methacrylate. Die Makromolekulare Chemie Rapid Communications, 1993, 14, 213-215.	1.1	31
318	Characterization of water-soluble oligomers formed during the emulsion polymerization of styrene by means of isotachophoresis. Journal of Polymer Science Part A, 1993, 31, 467-483.	2.5	25
319	The role of aqueous-phase kinetics in emulsion polymerizations. Progress in Polymer Science, 1993, 18, 1041-1096.	11.8	48
320	Pulsed laser study of the propagation kinetics of acrylamide and its derivatives in water. Macromolecules, 1993, 26, 4572-4576.	2.2	47
321	Seeded emulsion polymerization of butadiene. 1. The propagation rate coefficient. Macromolecules, 1993, 26, 268-275.	2.2	18
322	Solvent effects on the propagation rate coefficient for free radical polymerization. Macromolecules, 1993, 26, 4368-4372.	2.2	53
323	Diffusion of oligomeric species in polymer solutions. Macromolecules, 1993, 26, 4472-4477.	2.2	61
324	Chain-length-dependent termination rate processes in free-radical polymerizations. 2. Modeling methodology and application to methyl methacrylate emulsion polymerizations. Macromolecules, 1993, 26, 3538-3552.	2.2	98

#	Article	IF	CITATIONS
325	Collisional energy transfer in highly excited molecules: deuteration effects. The Journal of Physical Chemistry, 1992, 96, 8450-8453.	2.9	23
326	Collisional energy transfer in highly excited molecules: Calculations of the dependence on temperature and internal, rotational, and translational energy. Journal of Chemical Physics, 1992, 96, 5983-5998.	1.2	48
327	Free radical entry in emulsion polymerizations. Makromolekulare Chemie Macromolecular Symposia, 1992, 53, 233-242.	0.6	6
328	Kinetics of particle growth in emulsion polymerization systems with surface-active initiators. Macromolecules, 1992, 25, 7043-7050.	2.2	51
329	Desorbed free radicals in emulsion polymerizations: effect of aqueous-phase spin trap. Macromolecules, 1992, 25, 4065-4072.	2.2	20
330	Effects of diffusion control on the propagation and transfer rate coefficients in free radical polymerization. Macromolecules, 1992, 25, 7063-7065.	2.2	20
331	Chain-length-dependent termination rate processes in free-radical polymerizations. 1. Theory. Macromolecules, 1992, 25, 2459-2469.	2.2	153
332	Testing Nucleation Models for Emulsion-Polymerization Systems. ACS Symposium Series, 1992, , 28-44.	0.5	32
333	The effect of chain transfer agent on the entry of free radicals in emulsion polymerization. Die Makromolekulare Chemie, 1992, 193, 303-313.	1.1	17
334	Entry of free radicals into latex particles in emulsion polymerization. Macromolecules, 1991, 24, 1629-1640.	2.2	308
335	Kinetic aspects of the emulsion polymerization of butadiene. Macromolecules, 1991, 24, 1622-1628.	2.2	49
336	Theory of collisional energy transfer of highly excited molecules. International Reviews in Physical Chemistry, 1991, 10, 319-347.	0.9	48
337	Collisional energy transfer at high temperatures from the biased walk model. The Journal of Physical Chemistry, 1991, 95, 5007-5011.	2.9	13
338	Supercollision events in weak collisional energy transfer of highly excited species. Chemical Physics Letters, 1991, 182, 357-362.	1.2	61
339	Studies of particle formation in styrene emulsion polymerizations using 9-vinyl anthracene as a probe molecule. Journal of Polymer Science Part A, 1991, 29, 515-523.	2.5	10
340	Highâ€conversion emulsion, dispersion and suspension polymerization. Makromolekulare Chemie Macromolecular Symposia, 1990, 35-36, 1-12.	0.6	11
341	Calculation of collisional-energy-transfer rates in highly excited molecules. The Journal of Physical Chemistry, 1990, 94, 72-77.	2.9	63
342	Establishing mechanisms for emulsion polymerizations. Makromolekulare Chemie Macromolecular Symposia, 1990, 31, 1-10.	0.6	9

#	Article	IF	CITATIONS
343	Possible quantum effects in collisional energy transfer in highly excited molecules. Chemical Physics Letters, 1990, 167, 407-411.	1.2	9
344	Modeling collisional energy transfer in highly excited molecules. Journal of Chemical Physics, 1990, 92, 1819-1830.	1.2	55
345	Trajectory simulations of collisional energy transfer of highly vibrationally excited azulene. The Journal of Physical Chemistry, 1990, 94, 77-84.	2.9	74
346	Pulsed laser study of the propagation kinetics of acrylamide and methacrylamide in water. Macromolecules, 1990, 23, 5161-5163.	2.2	44
347	Bimolecular termination events in the seeded emulsion polymerization of styrene. Macromolecules, 1990, 23, 4624-4634.	2.2	48
348	Radical Capture Efficiencies in Emulsion Polymerization Kinetics., 1990,, 116-125.		4
349	The relationship between recombination, chemical activation and unimolecular dissociation rate coefficients. Journal of Chemical Physics, 1989, 90, 4265-4273.	1.2	64
350	The pressure dependence of ion–molecule association rate coefficients. Journal of Chemical Physics, 1989, 90, 1630-1640.	1.2	32
351	Mathematical modeling of emulsion copolymerization reactors. Journal of Applied Polymer Science, 1989, 37, 2727-2756.	1.3	98
352	Polymerization in Emulsions., 1989,, 171-218.		13
353	Microscopic reaction rates in ion/molecule reactions: effects of uncoupled modes. The Journal of Physical Chemistry, 1989, 93, 8142-8148.	2.9	21
354	Angular momentum conservation in unimolecular and recombination reactions. International Journal of Chemical Kinetics, 1988, 20, 307-329.	1.0	79
355	High temperature collisional energy transfer in highly vibrationally excited molecules. III: Isotope effects intert-butyl bromide systems. International Journal of Chemical Kinetics, 1988, 20, 549-563.	1.0	7
356	Angular momentum conservation in multichannel unimolecular reactions. International Journal of Chemical Kinetics, 1988, 20, 979-990.	1.0	35
357	The calculation and interpretation of average collisional energy transfer parameters. Chemical Physics Letters, 1988, 152, 377-381.	1.2	19
358	SANS study of particle nucleation in emulsion polymerization. Journal of Colloid and Interface Science, 1988, 121, 508-513.	5.0	13
359	Initiator efficiencies in high-conversion bulk polymerizations. Macromolecules, 1988, 21, 2141-2148.	2.2	127
360	Termination in free-radical polymerizing systems at high conversion. Macromolecules, 1988, 21, 2133-2140.	2.2	161

#	Article	IF	Citations
361	Determination of rate parameters in seeded emulsion polymerisation systems. A sensitivity analysis. Journal of the Chemical Society Faraday Transactions I, 1988, 84, 3107.	1.0	8
362	Stochastic models for solution dynamics: The friction and diffusion coefficients. Journal of Chemical Physics, 1988, 88, 6448-6458.	1.2	8
363	Microscopic kinetic events in emulsion polymerization. Makromolekulare Chemie Macromolecular Symposia, 1987, 10-11, 503-520.	0.6	16
364	Surfactant-free emulsion polymerizations: predictions of the coagulative nucleation theory. Macromolecules, 1987, 20, 2922-2930.	2.2	139
365	Emulsion polymerization of butyl acrylate. Kinetics of particle growth. Journal of the Chemical Society Faraday Transactions I, 1987, 83, 1449.	1.0	43
366	The determinants of latex monodispersity in emulsion polymerizations. Journal of Colloid and Interface Science, 1987, 118, 493-505.	5.0	30
367	Collisional energy transfer in highly vibrationally excited molecules: A very low-pressure pyrolysis study of acetyl chloride. International Journal of Chemical Kinetics, 1987, 19, 373-389.	1.0	1
368	High-temperature collisional energy transfer in highly vibrationally excited molecules II: Isotope effects in isopropyl bromide systems. International Journal of Chemical Kinetics, 1987, 19, 851-867.	1.0	8
369	Recombination reactions: variational transition state theory and the Gorin model. The Journal of Physical Chemistry, 1986, 90, 3104-3106.	2.9	12
370	Seeded heterogeneous polymerization of acrylonitrile. Macromolecules, 1986, 19, 2440-2448.	2.2	18
371	The effect of aqueous-phase solubility on free-radical exit from latex particles. Journal of the Chemical Society Faraday Transactions I, 1986, 82, 1979.	1.0	21
372	Entry rate coefficients in emulsion polymerization systems. Journal of the Chemical Society Faraday Transactions I, 1986, 82, 2247.	1.0	51
373	Propagation rate coefficients from electron spin resonance studies of the emulsion polymerization of methyl methacrylate. Macromolecules, 1986, 19, 1303-1308.	2.2	98
374	Theory of fast multiple bond-switching reactions: NO + NH2. International Journal of Chemical Kinetics, 1986, 18, 721-737.	1.0	15
375	Termination-rate coefficients in methyl methacrylate polymerizations. Journal of Polymer Science Part A, 1986, 24, 1027-1041.	2.5	47
376	The a priori calculation of collisional energy transfer in highly vibrationally excited molecules: The biased random walk model. Journal of Chemical Physics, 1986, 84, 6129-6140.	1.2	58
377	Periodic nucleation processes in emulsion polymerization systems. Journal of Colloid and Interface Science, 1985, 107, 159-173.	5.0	29
378	Collisional energy exchange in highly vibrationally excited molecules: The biased random walk model. Journal of Chemical Physics, 1984, 80, 5501-5509.	1.2	61

#	Article	IF	CITATIONS
379	Gas/wall collision efficiencies in very low pressure pyrolysis experiments. International Journal of Chemical Kinetics, 1984, 16, 1129-1137.	1.0	11
380	High temperature collisional energy transfer in highly vibrationally excited molecules: Isotope effects intert-butyl chloride systems. International Journal of Chemical Kinetics, 1984, 16, 1455-1470.	1.0	7
381	Kinetics of emulsion polymerization of methyl methacrylate. Journal of Polymer Science: Polymer Chemistry Edition, 1984, 22, 3225-3253.	0.8	140
382	Coagulative nucleation and particle size distributions in emulsion polymerization. Macromolecules, 1984, 17, 2520-2529.	2.2	186
383	A study of the kinetics of the emulsion polymerization of butyl methacrylate. Journal of the Chemical Society Faraday Transactions I, 1984, 80, 2851.	1.0	27
384	Effects of hydrocarbon diluents on the kinetics of the seeded emulsion polymerization of styrene. Journal of the Chemical Society Faraday Transactions I, 1984, 80, 2911.	1.0	14
385	Application of electron spin resonance spectroscopy to emulsion polymerization. Macromolecules, 1984, 17, 504-506.	2.2	34
386	Collisional deactivation of highly vibrationally excited molecules. Dynamics of the collision event. The Journal of Physical Chemistry, 1984, 88, 5135-5138.	2.9	23
387	The mechanisms of latex particle formation and growth in the emulsion polymerization of styrene using the surfactant sodium dodecyl sulfate. Journal of Polymer Science: Polymer Chemistry Edition, 1983, 21, 269-291.	0.8	137
388	Styrene emulsion polymerization: Kinetics and particle size distributions in highly swollen latex systems. Journal of Polymer Science: Polymer Chemistry Edition, 1983, 21, 985-997.	0.8	11
389	Measurements of collisional energy transfer in unimolecular processes. Chemical Physics Letters, 1983, 96, 259-262.	1.2	13
390	Styrene emulsion polymerization. The effects of initiator charge. Journal of the Chemical Society Faraday Transactions I, 1983, 79, 1257.	1.0	27
391	The Direct Determination of Kinetic Parameters in Emulsion Polymerization Systems. Journal of Macromolecular Science - Reviews in Macromolecular Chemistry and Physics, 1983, 23, 127-186.	2.2	106
392	Temperature dependence of collisional energy transfer in ethyl acetate. The Journal of Physical Chemistry, 1983, 87, 5214-5219.	2.9	14
393	Collisional energy transfer in the two-channel thermal decomposition of bromoethane-1,1,2,2-d4. The Journal of Physical Chemistry, 1983, 87, 494-498.	2.9	21
394	Effects of chain-transfer agents on the kinetics of the seeded emulsion polymerization of styrene. Journal of the Chemical Society Faraday Transactions I, 1982, 78, 2129.	1.0	32
395	Seeded emulsion polymerizations of styrene. The fate of exited free radicals. Journal of the Chemical Society Faraday Transactions I, 1982, 78, 1117.	1.0	32
396	An empirical formula for gas-wall collision efficiencies in VLPP experiments. International Journal of Chemical Kinetics, 1982, 14, 447-450.	1.0	7

#	Article	IF	CITATIONS
397	Low-temperature vibronic spectra of 1, 1′-binaphthyl. Chemical Physics, 1982, 72, 83-91.	0.9	12
398	Master equation description of the multiphoton decomposition of ethyl acetate. Chemical Physics, 1982, 69, 45-59.	0.9	23
399	The Molecular Weight Distributions of Emulsion Polymers. ACS Symposium Series, 1981, , 105-120.	0.5	6
400	Analysis of interval III kinetic data for emulsion polymerizations. Journal of the Chemical Society Faraday Transactions I, 1981, 77, 2395.	1.0	31
401	Very low-pressure pyrolysis of chloroethane-2,2,2-d3. Kinetics of hydrochloric acid-d elimination and the effect of carbon dioxide inert bath gas. The Journal of Physical Chemistry, 1981, 85, 4106-4108.	2.9	7
402	Convolution and deconvolution of focused beam data in multiphoton decomposition experiments. Chemical Physics Letters, 1981, 82, 311-314.	1.2	9
403	Improved methods for solving the smith — ewart equations in the steady state. Journal of Polymer Science, Polymer Letters Edition, 1981, 19, 533-537.	0.4	42
404	Styrene emulsion polymerization: Particle-size distributions. Journal of Polymer Science: Polymer Chemistry Edition, 1981, 19, 925-938.	0.8	42
405	Theory of emulsion copolymerization kinetics. Journal of Polymer Science: Polymer Chemistry Edition, 1981, 19, 939-954.	0.8	31
406	Langevin simulation of picosecond-resolved electronic spectra solution. Chemical Physics, 1981, 56, 241-248.	0.9	32
407	Eigenanalysis of infrared mulitphoton decomposition kinetics. Chemical Physics, 1981, 56, 343-354.	0.9	16
408	Gas/gas and gas/wall energy transfer functions in the multichannel thermal decomposition of chloroethane-2-d1. Chemical Physics, 1981, 61, 221-234.	0.9	31
409	Relaxation studies of the seeded emulsion polymerization of styrene initiated by \hat{I}^3 -radiolysis. Journal of the Chemical Society Faraday Transactions I, 1980, 76, 1344.	1.0	68
410	Thermal unimolecular reactions in the fall-off regime: A master equation analysis. Chemical Physics Letters, 1980, 76, 113-116.	1,2	4
411	The effects of a chain transfer agent on the kinetics of the emulsion polymerization of styrene. Journal of Polymer Science, Polymer Letters Edition, 1980, 18, 711-716.	0.4	23
412	Molecular weight distribution in emulsion polymerizations. Journal of Polymer Science: Polymer Chemistry Edition, 1980, 18, 1297-1323.	0.8	63
413	The thermal unimolecular decomposition of bromocyclobutane. International Journal of Chemical Kinetics, 1980, 12, 339-346.	1.0	5
414	Gas/gas and gas/wall average energy transfer from very low-pressure pyrolysis. Chemical Physics, 1980, 49, 367-375.	0.9	48

#	Article	lF	Citations
415	Seeded emulsion polymerization of styrene. Journal of the Chemical Society Faraday Transactions I, 1980, 76, 1323.	1.0	164
416	Competitive unimolecular reactions at low pressures. The pyrolysis of cyclobutyl chloride. International Journal of Chemical Kinetics, 1979, 11, 11-21.	1.0	15
417	The interpretation of pressure-dependent very-low-pressure pyrolysis experiments. International Journal of Chemical Kinetics, 1979, 11, 317-331.	1.0	12
418	Fokker-Planck interpretation of picosecond intramolecular dynamics in solutions. Chemical Physics, 1979, 44, 389-402.	0.9	78
419	Generalized opacity functions in reactive scattering: The Ar++ D2 and K + halogens reactions. Chemical Physics, 1978, 34, 319-327.	0.9	11
420	Solution of the master equation for unimolecular reactions. Chemical Physics Letters, 1978, 55, 40-43.	1.2	36
421	Intermolecular energy transfer in two-channel unimolecular reactions: the pyrolysis of 1-iodopropane. Chemical Physics Letters, 1978, 58, 591-595.	1.2	20
422	Sound propagation in reacting systems. Journal of the Acoustical Society of America, 1977, 62, 245-249.	0.5	3
423	Inversion of vibrationally inelastic scattering data. Molecular Physics, 1977, 34, 1407-1427.	0.8	1
424	Inversion of Vibrationally Inelastic Scattering Data. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1977, 81, 228-229.	0.9	0
425	The growth of polymer colloids. Journal of Polymer Science: Polymer Chemistry Edition, 1977, 15, 1957-1971.	0.8	27
426	Semiclassical treatment of vibrational energy transfer in three dimensions. Molecular Physics, 1976, 31, 1585-1598.	0.8	4
427	The isomerization of cycloheptatriene at high temperatures. International Journal of Chemical Kinetics, 1976, 8, 695-707.	1.0	15
428	The derivation of opacity functions from experimental scattering data. Chemical Physics Letters, 1976, 41, 108-113.	1.2	11
429	Inhomogeneous stationary states in reactionâ€"diffusion systems. Biophysical Chemistry, 1976, 4, 151-157.	1.5	5
430	Reaction and diffusion in autocatalytic systems. Chemical Physics, 1974, 5, 49-59.	0.9	2
431	Interaction of Sound with Gas Phase Reactions. Journal of Chemical Physics, 1972, 57, 2672-2679.	1.2	16