Ismail Sergin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10928278/publications.pdf Version: 2024-02-01

ISMAIL SEDCIN

#	Article	IF	CITATIONS
1	Embryonic and Adult-Derived Resident Cardiac Macrophages Are Maintained through Distinct Mechanisms at Steady State and during Inflammation. Immunity, 2014, 40, 91-104.	14.3	1,120
2	Exploiting macrophage autophagy-lysosomal biogenesis as a therapy for atherosclerosis. Nature Communications, 2017, 8, 15750.	12.8	258
3	Induction of Lysosomal Biogenesis in Atherosclerotic Macrophages Can Rescue Lipid-Induced Lysosomal Dysfunction and Downstream Sequelae. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1942-1952.	2.4	187
4	TFEB and trehalose drive the macrophage autophagy-lysosome system to protect against atherosclerosis. Autophagy, 2018, 14, 724-726.	9.1	120
5	Self-eating in the plaque: what macrophage autophagy reveals about atherosclerosis. Trends in Endocrinology and Metabolism, 2014, 25, 225-234.	7.1	93
6	High-protein diets increase cardiovascular risk by activating macrophage mTOR to suppress mitophagy. Nature Metabolism, 2020, 2, 110-125.	11.9	85
7	Inclusion bodies enriched for p62 and polyubiquitinated proteins in macrophages protect against atherosclerosis. Science Signaling, 2016, 9, ra2.	3.6	83
8	Target acquired: Selective autophagy in cardiometabolic disease. Science Signaling, 2017, 10, .	3.6	56
9	Location-Dependent Signaling of the Group 1 Metabotropic Glutamate Receptor mGlu5. Molecular Pharmacology, 2014, 86, 774-785.	2.3	49
10	Ursolic acid enhances macrophage autophagy and attenuates atherogenesis. Journal of Lipid Research, 2016, 57, 1006-1016.	4.2	45
11	N-3 PUFAs induce inflammatory tolerance by formation of KEAP1-containing SQSTM1/p62-bodies and activation of NFE2L2. Autophagy, 2017, 13, 1664-1678.	9.1	43
12	A Clinically Applicable Gene-Expression Classifier Reveals Intrinsic and Extrinsic Contributions to Consensus Molecular Subtypes in Primary and Metastatic Colon Cancer. Clinical Cancer Research, 2019, 25, 4431-4442.	7.0	40
13	Sequences within the C Terminus of the Metabotropic Glutamate Receptor 5 (mGluR5) Are Responsible for Inner Nuclear Membrane Localization. Journal of Biological Chemistry, 2017, 292, 3637-3655.	3.4	33
14	Degradation and beyond. Current Opinion in Lipidology, 2015, 26, 394-404.	2.7	30
15	Anti-angiogenic Nanotherapy Inhibits Airway Remodeling and Hyper-responsiveness of Dust Mite Triggered Asthma in the Brown Norway Rat. Theranostics, 2017, 7, 377-389.	10.0	19
16	MAP4K4 negatively regulates CD8 T cell–mediated antitumor and antiviral immunity. Science Immunology, 2020, 5, .	11.9	18
17	Hypoxia in Plaque Macrophages. Circulation Research, 2014, 115, 817-820.	4.5	11
18	Modulating Oxysterol Sensing to Control Macrophage Apoptosis and Atherosclerosis. Circulation Research, 2016, 119, 1258-1261.	4.5	8