Daniel R Saban

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10927977/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microglia Drive Pockets of Neuroinflammation in Middle Age. Journal of Neuroscience, 2022, 42, 3896-3918.	3.6	19
2	Allergy and Immune-Mediated Tissue Injury. , 2022, , 837-855.		0
3	Allergy and Immune-Mediated Tissue Injury. , 2021, , 1-20.		0
4	Allergy and Immune-Mediated Tissue Injury. , 2021, , 1-20.		0
5	Dysregulated transcriptional responses to SARS-CoV-2 in the periphery. Nature Communications, 2021, 12, 1079.	12.8	81
6	In vivo quantitative analysis of anterior chamber white blood cell mixture composition using spectroscopic optical coherence tomography. Biomedical Optics Express, 2021, 12, 2134.	2.9	4
7	The cornea IV immunology, infection, neovascularization, and surgery chapter 1: Corneal immunology. Experimental Eye Research, 2021, 205, 108502.	2.6	7
8	BAFF promotes heightened BCR responsiveness and manifestations of chronic GVHD after allogeneic stem cell transplantation. Blood, 2021, 137, 2544-2557.	1.4	23
9	Mucosal-associated invariant TÂcell responses differ by sex in COVID-19. Med, 2021, 2, 755-772.e5.	4.4	24
10	Meibomian gland dysfunction is suppressed via selective inhibition of immune responses by topical LFA-1/ICAM antagonism with lifitegrast in the allergic eye disease (AED) model. Ocular Surface, 2021, 21, 271-278.	4.4	10
11	scDAPA: detection and visualization of dynamic alternative polyadenylation from single cell RNA-seq data. Bioinformatics, 2020, 36, 1262-1264.	4.1	24
12	Disease-Specific Expression of Conjunctiva Associated Lymphoid Tissue (CALT) in Mouse Models of Dry Eye Disease and Ocular Allergy. International Journal of Molecular Sciences, 2020, 21, 7514.	4.1	9
13	The Immunological Basis of Dry Eye Disease and Current Topical Treatment Options. Journal of Ocular Pharmacology and Therapeutics, 2020, 36, 137-146.	1.4	73
14	Microglia versus Monocytes: Distinct Roles in Degenerative Diseases of the Retina. Trends in Neurosciences, 2020, 43, 433-449.	8.6	74
15	Large-scale death of retinal astrocytes during normal development is non-apoptotic and implemented by microglia. PLoS Biology, 2019, 17, e3000492.	5.6	55
16	PRCD is essential for high-fidelity photoreceptor disc formation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13087-13096.	7.1	44
17	Microglial Function Is Distinct in Different Anatomical Locations during Retinal Homeostasis and Degeneration. Immunity, 2019, 50, 723-737.e7.	14.3	235
18	Immune cells in the retina and choroid: Two different tissue environments that require different defenses and surveillance. Progress in Retinal and Eye Research, 2019, 70, 85-98.	15.5	68

DANIEL R SABAN

#	Article	IF	CITATIONS
19	Fate Mapping In Vivo to Distinguish Bona Fide Microglia Versus Recruited Monocyte-Derived Macrophages in Retinal Disease. Methods in Molecular Biology, 2019, 1834, 153-164.	0.9	7
20	Resolvin D1 treatment on goblet cell mucin and immune responses in the chronic allergic eye disease (AED) model. Mucosal Immunology, 2019, 12, 145-153.	6.0	23
21	Complement and CD4+ T cells drive context-specific corneal sensory neuropathy. ELife, 2019, 8, .	6.0	26
22	Identification of aÂUnique Subretinal Microglia Type in Retinal Degeneration Using Single Cell RNA-Seq. Advances in Experimental Medicine and Biology, 2019, 1185, 181-186.	1.6	7
23	New concepts in macrophage ontogeny in the adult neural retina. Cellular Immunology, 2018, 330, 79-85.	3.0	13
24	Induction and Characterization of the Allergic Eye Disease Mouse Model. Methods in Molecular Biology, 2018, 1799, 49-57.	0.9	13
25	Neutrophils cause obstruction of eyelid sebaceous glands in inflammatory eye disease in mice. Science Translational Medicine, 2018, 10, .	12.4	42
26	Effect of Anti-C5a Therapy in a Murine Model of Early/Intermediate Dry Age-Related Macular Degeneration. , 2018, 59, 662.		16
27	SYK inhibitor entospletinib prevents ocular and skin GVHD in mice. JCI Insight, 2018, 3, .	5.0	39
28	Interleukin-6 neutralization prolongs corneal allograft survival. Current Trends in Immunology, 2018, 19, 105-113.	4.0	2
29	New insights into mononuclear phagocyte biology from the visual system. Nature Reviews Immunology, 2017, 17, 322-332.	22.7	60
30	A Commencement for Eye Commensals. Immunity, 2017, 47, 6-8.	14.3	11
31	The Mechanism of Diabetic Retinopathy Pathogenesis Unifying Key Lipid Regulators, Sirtuin 1 and Liver X Receptor. EBioMedicine, 2017, 22, 181-190.	6.1	48
32	Method for single illumination source combined optical coherence tomography and fluorescence imaging of fluorescently labeled ocular structures in transgenic mice. Experimental Eye Research, 2016, 151, 68-74.	2.6	6
33	CX3CR1 deficiency accelerates the development of retinopathy in a rodent model of type 1 diabetes. Journal of Molecular Medicine, 2016, 94, 1255-1265.	3.9	32
34	Aldehyde dehydrogenase inhibition blocks mucosal fibrosis in human and mouse ocular scarring. JCI Insight, 2016, 1, e87001.	5.0	42
35	Classical dendritic cells mediate fibrosis directly via the retinoic acid pathway in severe eye allergy. JCI Insight, 2016, 1, .	5.0	32
36	Recipient-Derived BAFF and Alloantigen Synergistically Activate B Cells in Murine Chronic Gvhd. Blood, 2016, 128, 498-498.	1.4	4

DANIEL R SABAN

#	Article	IF	CITATIONS
37	Linking immune responses with fibrosis in allergic eye disease. Current Opinion in Allergy and Clinical Immunology, 2015, 15, 467-475.	2.3	15
38	Involvement of Corneal Lymphangiogenesis in a Mouse Model of Allergic Eye Disease. , 2015, 56, 3140.		49
39	Regulation of age-related macular degeneration-like pathology by complement factor H. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3040-9.	7.1	121
40	Partial denervation of sub-basal axons persists following debridement wounds to the mouse cornea. Laboratory Investigation, 2015, 95, 1305-1318.	3.7	24
41	Cytokine Deposition Alters Leukocyte Morphology and Initial Recruitment of Monocytes and γÎT Cells After Corneal Injury. , 2014, 55, 2757.		14
42	T helper subsets in allergic eye disease. Current Opinion in Allergy and Clinical Immunology, 2014, 14, 477-484.	2.3	22
43	CCL-21 Conditioned Regulatory T Cells Induce Allotolerance through Enhanced Homing to Lymphoid Tissue. Journal of Immunology, 2014, 192, 817-823.	0.8	43
44	The Chemokine Receptor CCR7 Expressed byÂDendritic Cells: A Key Player in Corneal andÂOcular Surface Inflammation. Ocular Surface, 2014, 12, 87-99.	4.4	63
45	New Twists to an Old Story: Novel Concepts in the Pathogenesis of Allergic Eye Disease. Current Eye Research, 2013, 38, 317-330.	1.5	39
46	CNS Inflammation and Bone Marrow Neuropathy in Type 1 Diabetes. American Journal of Pathology, 2013, 183, 1608-1620.	3.8	53
47	Effect of Desiccating Environmental Stress Versus Systemic Muscarinic AChR Blockade on Dry Eye Immunopathogenesis. , 2013, 54, 2457.		50
48	Ocular Allergy Modulation to Hi-Dose Antigen Sensitization Is a Treg-Dependent Process. PLoS ONE, 2013, 8, e75769.	2.5	17
49	Ocular Mucosal CD11b+ and CD103+ Mouse Dendritic Cells under Normal Conditions and in Allergic Immune Responses. PLoS ONE, 2013, 8, e64193.	2.5	48
50	Gamma-Irradiation Reduces the Allogenicity of Donor Corneas. , 2012, 53, 7151.		36
51	Blocking CCR7 at the Ocular Surface Impairs the Pathogenic Contribution of Dendritic Cells in Allergic Conjunctivitis. American Journal of Pathology, 2012, 180, 2351-2360.	3.8	65
52	Dependence of Corneal Stem/Progenitor Cells on Ocular Surface Innervation. , 2012, 53, 867.		116
53	Donor-derived, tolerogenic dendritic cells suppress immune rejection in the indirect allosensitization-dominant setting of corneal transplantation. Journal of Leukocyte Biology, 2012, 91, 621-627.	3.3	49
54	Characterization of Langerin-Expressing Dendritic Cell Subsets in the Normal Cornea. , 2011, 52, 4598.		85

DANIEL R SABAN

#	ARTICLE	IF	CITATIONS
55	Interferon-Î ³ -secreting NK cells promote induction of dry eye disease. Journal of Leukocyte Biology, 2011, 89, 965-972.	3.3	69
56	Effects of Topical and Subconjunctival Bevacizumab in High-Risk Corneal Transplant Survival. , 2010, 51, 2411.		79
57	Role of CCR7 in Facilitating Direct Allosensitization and Regulatory T-Cell Function in High-Risk Corneal Transplantation. , 2010, 51, 816.		24
58	Thrombospondin-1 Derived from APCs Regulates Their Capacity for Allosensitization. Journal of Immunology, 2010, 185, 4691-4697.	0.8	44
59	Characterization of Effector T Cells in Dry Eye Disease. , 2009, 50, 3802.		130
60	Levels of Foxp3 in Regulatory T Cells Reflect Their Functional Status in Transplantation. Journal of Immunology, 2009, 182, 148-153.	0.8	238
61	Autoimmunity in Dry Eye Is Due to Resistance of Th17 to Treg Suppression. Journal of Immunology, 2009, 182, 1247-1252.	0.8	253
62	Anti-angiogenesis Effect of the Novel Anti-inflammatory and Pro-resolving Lipid Mediators. , 2009, 50, 4743.		137
63	Characterization of intraocular immunopathology following intracameral inoculation with alloantigen. Molecular Vision, 2008, 14, 615-24.	1.1	8
64	The role of ACAID and CD4+CD25+FOXP3+ regulatory T cells on CTL function against MHC alloantigens. Molecular Vision, 2008, 14, 2435-42.	1.1	8