Andreas Stahl Madsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1092762/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lysine Glutarylation Is a Protein Posttranslational Modification Regulated by SIRT5. Cell Metabolism, 2014, 19, 605-617.	16.2	647
2	SIRT4 Is a Lysine Deacylase that Controls Leucine Metabolism and Insulin Secretion. Cell Metabolism, 2017, 25, 838-855.e15.	16.2	259
3	Metabolic control by sirtuins and other enzymes that sense NAD+, NADH, or their ratio. Biochimica Et Biophysica Acta - Bioenergetics, 2017, 1858, 991-998.	1.0	138
4	Histone Deacetylase 11 Is an ε-N-Myristoyllysine Hydrolase. Cell Chemical Biology, 2018, 25, 849-856.e8.	5.2	98
5	Investigating the Sensitivity of NAD+-dependent Sirtuin Deacylation Activities to NADH. Journal of Biological Chemistry, 2016, 291, 7128-7141.	3.4	91
6	Profiling of Substrates for Zincâ€dependent Lysine Deacylase Enzymes: HDAC3 Exhibits Decrotonylase Activity Inâ€Vitro. Angewandte Chemie - International Edition, 2012, 51, 9083-9087.	13.8	90
7	Substrates for Efficient Fluorometric Screening Employing the NAD-Dependent Sirtuin 5 Lysine Deacylase (KDAC) Enzyme. Journal of Medicinal Chemistry, 2012, 55, 5582-5590.	6.4	66
8	Mechanismâ€Based Inhibitors of the Human Sirtuin 5 Deacylase: Structure–Activity Relationship, Biostructural, and Kinetic Insight. Angewandte Chemie - International Edition, 2017, 56, 14836-14841.	13.8	62
9	Effective Modulation of DNA Duplex Stability by Reversible Transition Metal Complex Formation in the Minor Groove. Journal of the American Chemical Society, 2007, 129, 9392-9400.	13.7	58
10	The Effect of Various Zinc Binding Groups on Inhibition of Histone Deacetylases 1–11. ChemMedChem, 2014, 9, 614-626.	3.2	52
11	Pyrene–perylene as a FRET pair coupled to the N2′-functionality of 2′-amino-LNA. Bioorganic and Medicinal Chemistry, 2008, 16, 94-99.	3.0	51
12	Innovative Strategies for Selective Inhibition of Histone Deacetylases. Cell Chemical Biology, 2016, 23, 759-768.	5.2	50
13	A Continuous, Fluorogenic Sirtuin 2 Deacylase Assay: Substrate Screening and Inhibitor Evaluation. Journal of Medicinal Chemistry, 2016, 59, 1021-1031.	6.4	46
14	Synthesis and Hybridization Studies of 2â€~-Amino-α-L-LNA and Tetracyclic "Locked LNAâ€â€. Journal of Organic Chemistry, 2006, 71, 4188-4201.	3.2	43
15	Functionalized 2′-Amino-α-L-LNA: Directed Positioning of Intercalators for DNA Targeting. Journal of Organic Chemistry, 2009, 74, 1070-1081.	3.2	43
16	Functionalization of 2′-amino-LNA with additional nucleobases. Organic and Biomolecular Chemistry, 2009, 7, 1793.	2.8	39
17	Nucleic Acid Structural Engineering Using Pyrene-Functionalized 2′-Amino-α-L-LNA Monomers and Abasic Sites. Journal of Organic Chemistry, 2008, 73, 7060-7066.	3.2	37
18	Identification and Characterization of Second-Generation Invader Locked Nucleic Acids (LNAs) for Mixed-Sequence Recognition of Double-Stranded DNA. Journal of Organic Chemistry, 2013, 78, 9560-9570.	3.2	32

ANDREAS STAHL MADSEN

#	Article	IF	CITATIONS
19	Targeting Sirtuins: Substrate Specificity and Inhibitor Design. Progress in Molecular Biology and Translational Science, 2018, 154, 25-69.	1.7	32
20	Optimizing anti-gene oligonucleotide â€~Zorro-LNA' for improved strand invasion into duplex DNA. Nucleic Acids Research, 2011, 39, 1142-1154.	14.5	29
21	Chemical Editing of Macrocyclic Natural Products and Kinetic Profiling Reveal Slow, Tight-Binding Histone Deacetylase Inhibitors with Picomolar Affinities. Biochemistry, 2017, 56, 5134-5146.	2.5	29
22	Recognition of double-stranded DNA using energetically activated duplexes with interstrand zippers of 1-, 2- or 4-pyrenyl-functionalized <i>O</i> 2′-alkylated RNA monomers. Organic and Biomolecular Chemistry, 2014, 12, 7758-7773.	2.8	24
23	Mechanism-based inhibitors of SIRT2: structure–activity relationship, X-ray structures, target engagement, regulation of α-tubulin acetylation and inhibition of breast cancer cell migration. RSC Chemical Biology, 2021, 2, 612-626.	4.1	23
24	A potent trifluoromethyl ketone histone deacetylase inhibitor exhibits class-dependent mechanism of action. MedChemComm, 2016, 7, 464-470.	3.4	22
25	Large Scale Synthesis of 2â€2-Amino-LNA Thymine and 5-Methylcytosine Nucleosides. Journal of Organic Chemistry, 2012, 77, 10718-10728.	3.2	18
26	An azumamide C analogue without the zinc-binding functionality. MedChemComm, 2014, 5, 1849-1855.	3.4	16
27	Enzymatic polymerisation involving 2′-amino-LNA nucleotides. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 3522-3526.	2.2	12
28	An NAD ⁺ -Dependent Sirtuin Depropionylase and Deacetylase (Sir2La) from the Probiotic Bacterium <i>Lactobacillus acidophilus</i> NCFM. Biochemistry, 2018, 57, 3903-3915.	2.5	12
29	Mitochondria-targeted inhibitors of the human SIRT3 lysine deacetylase. RSC Chemical Biology, 2021, 2, 627-635.	4.1	11
30	LNA 5′-phosphoramidites for 5′→3′-oligonucleotide synthesis. Organic and Biomolecular Chemistry, 201 8, 5012.	10. 2.8	9
31	Synthesis and Structural Characterization of 2′â€Fluoroâ€Î±â€ <scp>L</scp> â€RNAâ€Modified Oligonucleotid ChemBioChem, 2011, 12, 1904-1911.	es. 2.6	9
32	Oligonucleotides with 1,4-Dioxane-Based Nucleotide Monomers. Journal of Organic Chemistry, 2012, 77, 3878-3886.	3.2	7
33	Mechanismâ€Based Inhibitors of the Human Sirtuin 5 Deacylase: Structure–Activity Relationship, Biostructural, and Kinetic Insight. Angewandte Chemie, 2017, 129, 15032-15037.	2.0	7
34	Synthesis, nucleic acid hybridization properties and molecular modelling studies of conformationally restricted 3′-O,4′-C-methylene-linked α-l-ribonucleotides. Carbohydrate Research, 2006, 341, 1398-1407.	2.3	6
35	Scalable and Purification-Free Synthesis of a Myristoylated FluoroÂgenic Sirtuin Substrate. Synlett, 2017, 28, 2169-2173.	1.8	6
36	Synthesis and Biophysical Studies of N2′-Functionalized 2′-Amino-α-L-LNA. Nucleosides, Nucleotides and Nucleic Acids, 2007, 26, 1403-1405.	1.1	4

#	Article	IF	CITATIONS
37	An acetylation photoswitch. Nature Chemical Biology, 2016, 12, 306-307.	8.0	4
38	Nucleosides with 1,4-dioxane as sugar moiety. Nucleic Acids Symposium Series, 2008, 52, 269-270.	0.3	0
39	Frontispiece: Mechanismâ€Based Inhibitors of the Human Sirtuin 5 Deacylase: Structure–Activity Relationship, Biostructural, and Kinetic Insight. Angewandte Chemie - International Edition, 2017, 56, .	13.8	0
40	Frontispiz: Mechanismâ€Based Inhibitors of the Human Sirtuin 5 Deacylase: Structure–Activity Relationship, Biostructural, and Kinetic Insight. Angewandte Chemie, 2017, 129, .	2.0	0