Philip D Gregory

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10925832/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Off-the-shelf, steroid-resistant, IL13Rα2-specific CAR T cells for treatment of glioblastoma. Neuro-Oncology, 2022, 24, 1318-1330.	1.2	32
2	Allele-selective transcriptional repression of mutant HTT for the treatment of Huntington's disease. Nature Medicine, 2019, 25, 1131-1142.	30.7	139
3	Genome Editing in Neuroepithelial Stem Cells to Generate Human Neurons with High Adenosine-Releasing Capacity. Stem Cells Translational Medicine, 2018, 7, 477-486.	3.3	8
4	Prostaglandin E2 Increases Lentiviral Vector Transduction Efficiency of Adult Human Hematopoietic Stem and Progenitor Cells. Molecular Therapy, 2018, 26, 320-328.	8.2	63
5	Genetic editing of HLA expression in hematopoietic stem cells to broaden their human application. Scientific Reports, 2016, 6, 21757.	3.3	33
6	Long-term multilineage engraftment of autologous genome-edited hematopoietic stem cells in nonhuman primates. Blood, 2016, 127, 2416-2426.	1.4	62
7	Preclinical development and qualification of ZFN-mediated CCR5 disruption in human hematopoietic stem/progenitor cells. Molecular Therapy - Methods and Clinical Development, 2016, 3, 16067.	4.1	91
8	Targeted gene addition in human CD34+ hematopoietic cells for correction of X-linked chronic granulomatous disease. Nature Biotechnology, 2016, 34, 424-429.	17.5	166
9	Highly efficient homology-driven genome editing in human T cells by combining zinc-finger nuclease mRNA and AAV6 donor delivery. Nucleic Acids Research, 2016, 44, e30-e30.	14.5	109
10	Absence of WASp Enhances Hematopoietic and Megakaryocytic Differentiation in a Human Embryonic Stem Cell Model. Molecular Therapy, 2016, 24, 342-353.	8.2	8
11	Potent and Broad Inhibition of HIV-1 by a Peptide from the gp41 Heptad Repeat-2 Domain Conjugated to the CXCR4 Amino Terminus. PLoS Pathogens, 2016, 12, e1005983.	4.7	43
12	In vivo genome editing of the albumin locus as a platform for protein replacement therapy. Blood, 2015, 126, 1777-1784.	1.4	256
13	Correction of the sickle cell disease mutation in human hematopoietic stem/progenitor cells. Blood, 2015, 125, 2597-2604.	1.4	292
14	Efficient genome editing in hematopoietic stem cells with helper-dependent Ad5/35 vectors expressing site-specific endonucleases under microRNA regulation. Molecular Therapy - Methods and Clinical Development, 2015, 2, 14057.	4.1	49
15	Improved specificity of TALE-based genome editing using an expanded RVD repertoire. Nature Methods, 2015, 12, 465-471.	19.0	91
16	Clinical Scale Zinc Finger Nuclease-mediated Gene Editing of PD-1 in Tumor Infiltrating Lymphocytes for the Treatment of Metastatic Melanoma. Molecular Therapy, 2015, 23, 1380-1390.	8.2	88
17	Functional footprinting of regulatory DNA. Nature Methods, 2015, 12, 927-930.	19.0	123
18	Targeted Correction and Restored Function of the CFTR Gene in Cystic Fibrosis Induced Pluripotent Stem Cells. Stem Cell Reports, 2015, 4, 569-577.	4.8	168

#	Article	IF	CITATIONS
19	Homology-driven genome editing in hematopoietic stem and progenitor cells using ZFN mRNA and AAV6 donors. Nature Biotechnology, 2015, 33, 1256-1263.	17.5	250
20	K13-propeller mutations confer artemisinin resistance in <i>Plasmodium falciparum</i> clinical isolates. Science, 2015, 347, 428-431.	12.6	563
21	Targeted gene therapy and cell reprogramming in <scp>F</scp> anconi anemia. EMBO Molecular Medicine, 2014, 6, 835-848.	6.9	66
22	Gene Editing of <i>CCR5</i> in Autologous CD4 T Cells of Persons Infected with HIV. New England Journal of Medicine, 2014, 370, 901-910.	27.0	1,227
23	Targeted genome editing in human repopulating haematopoietic stem cells. Nature, 2014, 510, 235-240.	27.8	517
24	Reactivation of Developmentally Silenced Globin Genes by Forced Chromatin Looping. Cell, 2014, 158, 849-860.	28.9	370
25	Genetic and molecular identification of three human TPP1 functions in telomerase action: recruitment, activation, and homeostasis set point regulation. Genes and Development, 2014, 28, 1885-1899.	5.9	101
26	CRISPR technology for gene therapy. Nature Medicine, 2014, 20, 476-477.	30.7	17
27	Human Intestinal Tissue with Adult Stem Cell Properties Derived from Pluripotent Stem Cells. Stem Cell Reports, 2014, 2, 838-852.	4.8	83
28	A Southern Blot Protocol to Detect Chimeric Nuclease-Mediated Gene Repair. Methods in Molecular Biology, 2014, 1114, 325-338.	0.9	1
29	Translating dosage compensation to trisomy 21. Nature, 2013, 500, 296-300.	27.8	282
30	Genomic Editing of the HIV-1 Coreceptor CCR5 in Adult Hematopoietic Stem and Progenitor Cells Using Zinc Finger Nucleases. Molecular Therapy, 2013, 21, 1259-1269.	8.2	167
31	Robust ZFN-mediated genome editing in adult hemophilic mice. Blood, 2013, 122, 3283-3287.	1.4	159
32	Toward eliminating HLA class I expression to generate universal cells from allogeneic donors. Blood, 2013, 122, 1341-1349.	1.4	243
33	In vivo cleavage of transgene donors promotes nucleaseâ€mediated targeted integration. Biotechnology and Bioengineering, 2013, 110, 871-880.	3.3	167
34	Activation domains for controlling plant gene expression using designed transcription factors. Plant Biotechnology Journal, 2013, 11, 671-680.	8.3	33
35	Use of zinc-finger nucleases to knock out the <i>WAS</i> gene in K562 cells: a human cellular model for Wiskott-Aldrich syndrome. DMM Disease Models and Mechanisms, 2013, 6, 544-54.	2.4	16
36	A Designed Zinc-finger Transcriptional Repressor of Phospholamban Improves Function of the Failing Heart. Molecular Therapy, 2012, 20, 1508-1515.	8.2	18

#	Article	IF	CITATIONS
37	Site-specific genome editing in Plasmodium falciparum using engineered zinc-finger nucleases. Nature Methods, 2012, 9, 993-998.	19.0	149
38	Controlling Long-Range Genomic Interactions at a Native Locus by Targeted Tethering of a Looping Factor. Cell, 2012, 149, 1233-1244.	28.9	615
39	Zinc-finger Nuclease Editing of Human cxcr4 Promotes HIV-1 CD4+ T Cell Resistance and Enrichment. Molecular Therapy, 2012, 20, 849-859.	8.2	100
40	A foundation for universal T-cell based immunotherapy: T cells engineered to express a CD19-specific chimeric-antigen-receptor and eliminate expression of endogenous TCR. Blood, 2012, 119, 5697-5705.	1.4	437
41	Editing T cell specificity towards leukemia by zinc finger nucleases and lentiviral gene transfer. Nature Medicine, 2012, 18, 807-815.	30.7	398
42	Targeted gene addition to a predetermined site in the human genome using a ZFN-based nicking enzyme. Genome Research, 2012, 22, 1316-1326.	5.5	121
43	Transcriptional activation of <i>Brassica napus</i> βâ€ketoacylâ€ACP synthase II with an engineered zinc finger protein transcription factor. Plant Biotechnology Journal, 2012, 10, 783-791.	8.3	57
44	Efficient Immunoglobulin Gene Disruption and Targeted Replacement in Rabbit Using Zinc Finger Nucleases. PLoS ONE, 2011, 6, e21045.	2.5	151
45	Site-specific integration and tailoring of cassette design for sustainable gene transfer. Nature Methods, 2011, 8, 861-869.	19.0	300
46	In vivo genome editing restores haemostasis in a mouse model of haemophilia. Nature, 2011, 475, 217-221.	27.8	523
47	Generation of Isogenic Pluripotent Stem Cells Differing Exclusively at Two Early Onset Parkinson Point Mutations. Cell, 2011, 146, 318-331.	28.9	703
48	Targeted Genome Editing Across Species Using ZFNs and TALENs. Science, 2011, 333, 307-307.	12.6	556
49	An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nature Biotechnology, 2011, 29, 816-823.	17.5	488
50	Knockout rats generated by embryo microinjection of TALENs. Nature Biotechnology, 2011, 29, 695-696.	17.5	556
51	Dissection of Splicing Regulation at an Endogenous Locus by Zinc-Finger Nuclease-Mediated Gene Editing. PLoS ONE, 2011, 6, e16961.	2.5	8
52	Rapid and efficient clathrin-mediated endocytosis revealed in genome-edited mammalian cells. Nature Cell Biology, 2011, 13, 331-337.	10.3	233
53	Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures. Nature Methods, 2011, 8, 74-79.	19.0	376
54	A TALE nuclease architecture for efficient genome editing. Nature Biotechnology, 2011, 29, 143-148.	17.5	1,855

#	Article	IF	CITATIONS
55	Genetic engineering of human pluripotent cells using TALE nucleases. Nature Biotechnology, 2011, 29, 731-734.	17.5	1,082
56	Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12013-12017.	7.1	329
57	Efficient targeted gene disruption in the soma and germ line of the frog <i>Xenopus tropicalis</i> using engineered zinc-finger nucleases. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7052-7057.	7.1	135
58	DNA Ligase III Promotes Alternative Nonhomologous End-Joining during Chromosomal Translocation Formation. PLoS Genetics, 2011, 7, e1002080.	3.5	250
59	Engineering HIV-Resistant Human CD4+ T Cells with CXCR4-Specific Zinc-Finger Nucleases. PLoS Pathogens, 2011, 7, e1002020.	4.7	130
60	<i>BAK</i> and <i>BAX</i> deletion using zincâ€finger nucleases yields apoptosisâ€resistant CHO cells. Biotechnology and Bioengineering, 2010, 105, 330-340.	3.3	146
61	Generation of a tripleâ€gene knockout mammalian cell line using engineered zincâ€finger nucleases. Biotechnology and Bioengineering, 2010, 106, 97-105.	3.3	90
62	Highly efficient deletion of <i>FUT8</i> in CHO cell lines using zincâ€finger nucleases yields cells that produce completely nonfucosylated antibodies. Biotechnology and Bioengineering, 2010, 106, 774-783.	3.3	163
63	Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nature Biotechnology, 2010, 28, 839-847.	17.5	618
64	Transient cold shock enhances zinc-finger nuclease–mediated gene disruption. Nature Methods, 2010, 7, 459-460.	19.0	137
65	Genome editing with engineered zinc finger nucleases. Nature Reviews Genetics, 2010, 11, 636-646.	16.3	1,863
66	Zinc-finger nuclease-driven targeted integration into mammalian genomes using donors with limited chromosomal homology. Nucleic Acids Research, 2010, 38, e152-e152.	14.5	177
67	An Engineered Zinc Finger Protein Activator of the Endogenous Glial Cell Line-Derived Neurotrophic Factor Gene Provides Functional Neuroprotection in a Rat Model of Parkinson's Disease. Journal of Neuroscience, 2010, 30, 16469-16474.	3.6	61
68	Functional genomics, proteomics, and regulatory DNA analysis in isogenic settings using zinc finger nuclease-driven transgenesis into a safe harbor locus in the human genome. Genome Research, 2010, 20, 1133-1142.	5.5	280
69	Targeted gene addition to human mesenchymal stromal cells as a cell-based plasma-soluble protein delivery platform. Cytotherapy, 2010, 12, 394-399.	0.7	55
70	Distinct Factors Control Histone Variant H3.3 Localization at Specific Genomic Regions. Cell, 2010, 140, 678-691.	28.9	1,069
71	Targeted transgene integration in plant cells using designed zinc finger nucleases. Plant Molecular Biology, 2009, 69, 699-709.	3.9	213
72	Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature, 2009, 459, 437-441.	27.8	862

5

#	Article	IF	CITATIONS
73	Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nature Biotechnology, 2009, 27, 851-857.	17.5	990
74	Knockout Rats via Embryo Microinjection of Zinc-Finger Nucleases. Science, 2009, 325, 433-433.	12.6	836
75	Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases. Proceedings of the United States of America, 2008, 105, 5809-5814.	7.1	347
76	Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nature Biotechnology, 2008, 26, 702-708.	17.5	842
77	Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nature Biotechnology, 2008, 26, 808-816.	17.5	916
78	Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3055-3060.	7.1	352
79	Gene Transfer of An Engineered Zinc Finger Protein Enhances the Anti-angiogenic Defense System. Molecular Therapy, 2007, 15, 1917-1923.	8.2	17
80	Enhanced protein production by engineered zinc finger proteins. Biotechnology and Bioengineering, 2007, 97, 1180-1189.	3.3	19
81	An improved zinc-finger nuclease architecture for highly specific genome editing. Nature Biotechnology, 2007, 25, 778-785.	17.5	967
82	Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nature Biotechnology, 2007, 25, 1298-1306.	17.5	797
83	Controlling gene expression in Drosophila using engineered zinc finger protein transcription factors. Biochemical and Biophysical Research Communications, 2006, 348, 873-879.	2.1	7
84	Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature, 2005, 435, 646-651.	27.8	1,512
85	Gene regulation in planta by plant-derived engineered zinc finger protein transcription factors. Plant Molecular Biology, 2005, 57, 411-423.	3.9	16
86	Isogenic Human Cell Lines for Drug Discovery: Regulation of Target Gene Expression by Engineered Zinc-Finger Protein Transcription Factors. Journal of Biomolecular Screening, 2005, 10, 304-313.	2.6	15
87	Histone Deimination Antagonizes Arginine Methylation. Cell, 2004, 118, 545-553.	28.9	744
88	Zinc-finger protein-targeted gene regulation: Genomewide single-gene specificity. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11997-12002.	7.1	142
89	Repression of vascular endothelial growth factor A in glioblastoma cells using engineered zinc finger transcription factors. Cancer Research, 2003, 63, 8968-76.	0.9	60
90	Biotechnologies and therapeutics: chromatin as a target. Current Opinion in Genetics and Development, 2002, 12, 233-242.	3.3	22

#	Article	IF	CITATIONS
91	Gene-Specific Targeting of H3K9 Methylation Is Sufficient for Initiating Repression In Vivo. Current Biology, 2002, 12, 2159-2166.	3.9	223
92	Histone Acetylation and Chromatin Remodeling. Experimental Cell Research, 2001, 265, 195-202.	2.6	243
93	Transcription and chromatin converge: lessons from yeast genetics. Current Opinion in Genetics and Development, 2001, 11, 142-147.	3.3	19
94	A Transient Histone Hyperacetylation Signal Marks Nucleosomes for Remodeling at the PHO8 Promoter In Vivo. Molecular Cell, 2001, 7, 529-538.	9.7	96
95	Chromatin remodelling at the PHO8 promoter requires SWI–SNF and SAGA at a step subsequent to activator binding. EMBO Journal, 1999, 18, 6407-6414.	7.8	117
96	Mapping chromatin structure in yeast. Methods in Enzymology, 1999, 304, 365-376.	1.0	22
97	Life with nucleosomes: chromatin remodelling in gene regulation. Current Opinion in Cell Biology, 1998, 10, 339-345.	5.4	45
98	Absence of Gcn5 HAT Activity Defines a Novel State in the Opening of Chromatin at the PHO5 Promoter in Yeast. Molecular Cell, 1998, 1, 495-505.	9.7	103
99	Analyzing Chromatin Structure and Transcription Factor Binding in Yeast. Methods, 1998, 15, 295-302.	3.8	14