
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/109251/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Diverse Lifestyles and Strategies of Plant Pathogenesis Encoded in the Genomes of Eighteen Dothideomycetes Fungi. PLoS Pathogens, 2012, 8, e1003037.	4.7	595
2	The Genomes of the Fungal Plant Pathogens Cladosporium fulvum and Dothistroma septosporum Reveal Adaptation to Different Hosts and Lifestyles But Also Signatures of Common Ancestry. PLoS Genetics, 2012, 8, e1003088.	3.5	226
3	Efficient protoplast isolation from fungi using commercial enzymes. Enzyme and Microbial Technology, 1981, 3, 321-325.	3.2	155
4	Dothistroma (red-band) needle blight of pines and the dothistromin toxin: a review. Forest Pathology, 2004, 34, 163-185.	1.1	104
5	Global geographic distribution and host range of <i>Dothistroma</i> species: a comprehensive review. Forest Pathology, 2016, 46, 408-442.	1.1	84
6	Characterization and Distribution of Mating Type Genes in the Dothistroma Needle Blight Pathogens. Phytopathology, 2007, 97, 825-834.	2.2	79
7	High levels of dothistromin toxin produced by the forest pathogen Dothistroma pini. Mycological Research, 2000, 104, 325-332.	2.5	62
8	Gene targeting is locus dependent in the filamentous fungus Aspergillus nidulans. Molecular Genetics and Genomics, 1997, 255, 219-225.	2.4	59
9	A worldwide perspective on the management and control of Dothistroma needle blight. Forest Pathology, 2016, 46, 472-488.	1.1	58
10	Fragmentation of an aflatoxinâ€like gene cluster in a forest pathogen. New Phytologist, 2013, 198, 525-535.	7.3	55
11	Specific Hypersensitive Response–Associated Recognition of New Apoplastic Effectors from <i>Cladosporium fulvum</i> in Wild Tomato. Molecular Plant-Microbe Interactions, 2018, 31, 145-162.	2.6	50
12	Genomeâ€wide gene expression dynamics of the fungal pathogen <i><scp>D</scp>othistroma septosporum</i> throughout its infection cycle of the gymnosperm host <i><scp>P</scp>inus radiata</i> . Molecular Plant Pathology, 2016, 17, 210-224.	4.2	48
13	<i>Phytophthora agathidicida</i> : research progress, cultural perspectives and knowledge gaps in the control and management of kauri dieback in New Zealand. Plant Pathology, 2020, 69, 3-16.	2.4	48
14	The veA gene of the pine needle pathogen Dothistroma septosporum regulates sporulation and secondary metabolism. Fungal Genetics and Biology, 2012, 49, 141-151.	2.1	46
15	Dothistroma pini , a Forest Pathogen, Contains Homologs of Aflatoxin Biosynthetic Pathway Genes. Applied and Environmental Microbiology, 2002, 68, 2885-2892.	3.1	45
16	A Polyketide Synthase Gene Required for Biosynthesis of the Aflatoxin-like Toxin, Dothistromin. Mycopathologia, 2006, 161, 283-294.	3.1	41
17	A fragmented aflatoxin-like gene cluster in the forest pathogen Dothistroma septosporum. Fungal Genetics and Biology, 2007, 44, 1342-1354.	2.1	35
18	Dothistromin toxin is a virulence factor in dothistroma needle blight of pines. Plant Pathology, 2015, 64, 225-234.	2.4	35

#	Article	IF	CITATIONS
19	Dothistromin genes at multiple separate loci are regulated by AflR. Fungal Genetics and Biology, 2013, 51, 12-20.	2.1	30
20	Dothistroma needle blight , 2013, , 436-457.		30
21	Biosynthesis of dothistromin. Mycopathologia, 2006, 162, 201-213.	3.1	28
22	LaeA negatively regulates dothistromin production in the pine needle pathogen Dothistroma septosporum. Fungal Genetics and Biology, 2016, 97, 24-32.	2.1	27
23	A review of Pinaceae resistance mechanisms against needle and shoot pathogens with a focus on the <i>Dothistroma</i> – <i>Pinus</i> interaction. Forest Pathology, 2016, 46, 453-471.	1.1	26
24	A conserved proline residue in Dothideomycete Avr4 effector proteins is required to trigger a Cfâ€4â€dependent hypersensitive response. Molecular Plant Pathology, 2016, 17, 84-95.	4.2	24
25	Genetic diversity of <i>Phytophthora pluvialis</i> , a pathogen of conifers, in New Zealand and the west coast of the United States of America. Plant Pathology, 2018, 67, 1131-1139.	2.4	23
26	Conservation and expansion of a necrosisâ€inducing small secreted protein family from hostâ€variable phytopathogens of the Sclerotiniaceae. Molecular Plant Pathology, 2020, 21, 512-526.	4.2	23
27	Heat shock and stationary phase induce transcription of the Saccharomyces cerevisiae iso-2 cytochrome c gene. Current Genetics, 1991, 20, 185-188.	1.7	22
28	A mutualistic fungal symbiont of perennial ryegrass contains two different pyr4 genes, both expressing orotidine-5′-monophosphate decarboxylase. Gene, 1995, 158, 31-39.	2.2	22
29	Dothistromin toxin is not required for dothistroma needle blight in <i>Pinus radiata</i> . Plant Pathology, 2009, 58, 293-304.	2.4	22
30	The hemibiotrophic lifestyle of the fungal pine pathogen <i>Dothistroma septosporum</i> . Forest Pathology, 2015, 45, 190-202.	1.1	22
31	Development of microsatellite and mating type markers for the pine needle pathogen Lecanosticta acicola. Australasian Plant Pathology, 2014, 43, 161-165.	1.0	21
32	Genetics of Dothistromin Biosynthesis of Dothistroma septosporum: An Update. Toxins, 2010, 2, 2680-2698.	3.4	20
33	Global population genomics of the forest pathogen <i>Dothistroma septosporum </i> reveal chromosome duplications in high dothistrominâ€producing strains. Molecular Plant Pathology, 2019, 20, 784-799.	4.2	19
34	Early expression of aflatoxin-like dothistromin genes in the forest pathogen Dothistroma septosporum. Mycological Research, 2008, 112, 138-146.	2.5	18
35	A novel GFP-based approach for screening biocontrol microorganisms in vitro against Dothistroma septosporum. Journal of Microbiological Methods, 2011, 87, 32-37.	1.6	18
36	An improved artificial pathogenicity assay for Dothistroma needle blight on Pinus radiata. Australasian Plant Pathology, 2013, 42, 503-510.	1.0	17

#	Article	IF	CITATIONS
37	Isolation and nucleotide sequence of the 5-aminolevulinate synthase gene from Aspergillus nidulans. Current Genetics, 1993, 23, 501-507.	1.7	16
38	Transformation of the fungal forest pathogen Dothistroma pini to hygromycin resistance. Mycological Research, 1997, 101, 1247-1250.	2.5	16
39	Signatures of Post-Glacial Genetic Isolation and Human-Driven Migration in the Dothistroma Needle Blight Pathogen in Western Canada. Phytopathology, 2021, 111, 116-127.	2.2	15
40	Cytochrome c is not essential for viability of the fungus Aspergillus nidulans. Molecular Genetics and Genomics, 2001, 266, 48-55.	2.1	14
41	Ciborinia camelliae (Sclerotiniaceae) Induces Variable Plant Resistance Responses in Selected Species of Camellia. Phytopathology, 2013, 103, 725-732.	2.2	14
42	DsEcp2-1 is a polymorphic effector that restricts growth of Dothistroma septosporum in pine. Fungal Genetics and Biology, 2020, 135, 103300.	2.1	14
43	Cloning and characterisation of the cytochrome c gene of Aspergillus nidulans. Molecular Genetics and Genomics, 1994, 242, 17-22.	2.4	13
44	Chromatinâ€level regulation of the fragmented dothistromin gene cluster in the forest pathogen <i>Dothistroma septosporum</i> . Molecular Microbiology, 2018, 107, 508-522.	2.5	13
45	Functional analysis of RXLR effectors from the New Zealand kauri dieback pathogen <i>Phytophthora agathidicida</i> . Molecular Plant Pathology, 2020, 21, 1131-1148.	4.2	13
46	Detection and quantification of three distinct Neotyphodium lolii endophytes in Lolium perenne by real time PCR of secondary metabolite genes. Fungal Biology, 2014, 118, 316-324.	2.5	11
47	Apoplastic effector candidates of a foliar forest pathogen trigger cell death in host and non-host plants. Scientific Reports, 2021, 11, 19958.	3.3	11
48	Rapid identification of polymorphic microsatellite loci in a forest pathogen, Dothistroma pini, using anchored PCR. Mycological Research, 2001, 105, 1075-1078.	2.5	10
49	Transformation of Cyclaneusma minus with Green Fluorescent Protein (GFP) to Enable Screening of Fungi for Biocontrol Activity. Forests, 2012, 3, 83-94.	2.1	10
50	Protoplast fusion in Aspergillus: selection of interspecific heterokaryons using antifungal inhibitors. Journal of Microbiological Methods, 1984, 3, 27-32.	1.6	9
51	Functional Analysis of a Putative Dothistromin Toxin MFS Transporter Gene. Toxins, 2009, 1, 173-187.	3.4	9
52	From protoplasts to gene clusters. The Mycologist, 2006, 20, 133-139.	0.4	8
53	Dothistromin biosynthesis genes allow inter―and intraspecific differentiation between Dothistroma pine needle blight fungi. Forest Pathology, 2011, 41, 407-416.	1.1	8
54	Evolution of polyketide synthesis in a Dothideomycete forest pathogen. Fungal Genetics and Biology, 2017, 106, 42-50.	2.1	8

#	Article	IF	CITATIONS
55	CRISPR-Cas9 gene editing and rapid detection of gene-edited mutants using high-resolution melting in the apple scab fungus, Venturia inaequalis. Fungal Biology, 2022, 126, 35-46.	2.5	8
56	Genomics of the filamentous fungi – moving from the shadow of the bakers yeast. The Mycologist, 2006, 20, 10-14.	0.4	7
57	A novel secondary metabolite from theEucalyptuspathogenMycosphaerella cryptica. Forest Pathology, 2009, 39, 289-292.	1.1	7
58	In vitro assays of Phytophthora agathidicida on kauri leaves suggest variability in pathogen virulence and host response. New Zealand Plant Protection, 0, 71, 285-288.	0.3	7
59	Aspects of penicillin production in Aspergillus hybrids. Enzyme and Microbial Technology, 1984, 6, 121-126.	3.2	6
60	Isolation and nucleotide sequence of the ribosomal protein S16-encoding gene from Aspergillus nidulans. Gene, 1991, 108, 157-162.	2.2	6
61	Reduced Virulence of an Introduced Forest Pathogen over 50 Years. Microorganisms, 2019, 7, 420.	3.6	6
62	Evolutionary relics dominate the small number of secondary metabolism genes in the hemibiotrophic fungus Dothistroma septosporum. Fungal Biology, 2019, 123, 397-407.	2.5	6
63	Isolation and Northern blotting of RNA from Aspergillus nidulans. Journal of Microbiological Methods, 1992, 15, 1-5.	1.6	5
64	Targeted Gene Mutations in the Forest Pathogen Dothistroma septosporum Using CRISPR/Cas9. Plants, 2022, 11, 1016.	3.5	5
65	First report of apothecia of Tapesia yallundae occurring on the wild grass Holcus lanatus (Yorkshire) Tj ETQq1 1	0.784314	∙rg₿T /Overloc
66	Regulation of the aflatoxin-like toxin dothistromin by AflJ. Fungal Biology, 2015, 119, 503-508.	2.5	4
67	Genetic analysis in Aspergillus rugulosus using the parasexual cycle. Transactions of the British Mycological Society, 1983, 81, 15-19.	0.6	3
68	Genetics of Dothistromin Biosynthesis in the Peanut Pathogen Passalora arachidicola. Toxins, 2010, 2, 2738-2753.	3.4	3
69	Genome-scale investigation of phenotypically distinct but nearly clonal <i>Trichoderma</i> strains. PeerJ, 2016, 4, e2023.	2.0	3
70	Growth and fruition of a pathology research community: the Dothistroma story. Forest Pathology, 2016, 46, 383-387.	1.1	3
71	<i>Camellia</i> Plant Resistance and Susceptibility to Petal Blight Disease Are Defined by the Timing of Defense Responses. Molecular Plant-Microbe Interactions, 2020, 33, 982-995.	2.6	2
72	The secreted proteome of necrotrophic Ciborinia camelliae causes nonâ€hostâ€specific virulence. Plant Pathology, 0, , .	2.4	1

#	Article	IF	CITATIONS
73	Fungal genetics. , 2018, , 35-42.		1
74	Identification of putative regulatory signals including the HAP1 binding site in the upstream sequence of the Aspergillus nidulans cytochrome c gene (cycA) Fungal Genetics Reports, 1998, 45, 15-18.	0.6	0