Kenneth Ng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1091657/publications.pdf

Version: 2024-02-01

567281 752698 20 968 15 20 citations h-index g-index papers 20 20 20 1504 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Structural studies of codeinone reductase reveal novel insights into aldo-keto reductase function in benzylisoquinoline alkaloid biosynthesis. Journal of Biological Chemistry, 2021, 297, 101211.	3.4	4
2	Structure–function studies of tetrahydroprotoberberine N-methyltransferase reveal the molecular basis of stereoselective substrate recognition. Journal of Biological Chemistry, 2019, 294, 14482-14498.	3.4	19
3	Structural basis for the preference of the <i>Arabidopsis thaliana</i> phosphatase RLPH2 for tyrosine-phosphorylated substrates. Science Signaling, 2018, 11, .	3.6	4
4	The structure of the SBP-Tag–streptavidin complex reveals a novel helical scaffold bridging binding pockets on separate subunits. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 879-887.	2.5	26
5	Tetrameric Structure of the GlfT2 Galactofuranosyltransferase Reveals a Scaffold for the Assembly of Mycobacterial Arabinogalactan. Journal of Biological Chemistry, 2012, 287, 28132-28143.	3.4	53
6	Binding of Clostridium difficile toxins to human milk oligosaccharides. Glycobiology, 2011, 21, 1217-1227.	2.5	40
7	Total synthesis of LeA-LacNAc pentasaccharide as a ligand for Clostridium difficiletoxin A. Organic and Biomolecular Chemistry, 2010, 8, 128-136.	2.8	17
8	A structural comparison of three isoforms of anionic trypsin from chum salmon (Oncorhynchus) Tj ETQq0 0 0 rg	BT Overlo	ock 10 Tf 50 46
9	PII in higher plants: a modern role for an ancient protein. Trends in Plant Science, 2009, 14, 505-511.	8.8	86
10	Structural Insights into Antibody Recognition of Mycobacterial Polysaccharides. Journal of Molecular Biology, 2009, 392, 381-392.	4.2	48
11	Functional properties of the carboxy-terminal host cell-binding domains of the two toxins, TcdA and TcdB, expressed by Clostridium difficile. Glycobiology, 2008, 18, 698-706.	2.5	60
12	Structure-Function Relationships Among RNA-Dependent RNA Polymerases. Current Topics in Microbiology and Immunology, 2008, 320, 137-156.	1.1	185
13	The higher plant PII signal transduction protein: structure, function and properties. Canadian Journal of Botany, 2007, 85, 533-537.	1.1	4
14	The PII Signal Transduction Protein of Arabidopsis thaliana Forms an Arginine-regulated Complex with Plastid N-Acetyl Glutamate Kinase. Journal of Biological Chemistry, 2006, 281, 5726-5733.	3.4	109
15	Engineering of a Staphylokinase-based Fibrinolytic Agent with Antithrombotic Activity and Targeting Capability toward Thrombin-rich Fibrin and Plasma Clots. Journal of Biological Chemistry, 2003, 278, 26677-26686.	3.4	28
16	Crystal Structures of Active and Inactive Conformations of a Caliciviral RNA-dependent RNA Polymerase. Journal of Biological Chemistry, 2002, 277, 1381-1387.	3.4	140
17	Crystal Structure and Nucleotide Sequence of an Anionic Trypsin from Chum Salmon (Oncorhynchus) Tj ETQq1 Biology, 2002, 324, 391-397.	1 0.78431 4.2	14 rgBT /Overl 29
18	X-ray crystallographic analyses of complexes between bovine β-trypsin and schiff base copper(II) or iron(III) chelates11Edited by I. A. Wilson. Journal of Molecular Biology, 2001, 305, 471-479.	4.2	37

Kenneth Ng

#	Article	IF	CITATIONS
19	Crystal structure of \hat{I}^3 -chymotrypsin in complex with 7-hydroxycoumarin 1 1Edited by I. A. Wilson. Journal of Molecular Biology, 2001, 314, 519-525.	4.2	14
20	Structural basis for the inhibition of porcine pepsin by Ascaris pepsin inhibitor-3. Nature Structural Biology, 2000, 7, 653-657.	9.7	59