Khaliq Mahmood

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10914844/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Surface and Structural Modifications of Tungsten by Laser Irradiation for Enhanced Electrochemical Corrosion Resistance. Journal of Materials Engineering and Performance, 2022, 31, 1904-1913.	2.5	3
2	Langmuir Probe Characterization of Spatially Confined Laser-Ablated Iron Plasma Along With Surface Modifications. IEEE Transactions on Plasma Science, 2022, 50, 1206-1217.	1.3	0
3	Investigation and correlation between surface modifications and field emission properties of laser-induced silicon plasma ion irradiated stainless steel. Radiation Effects and Defects in Solids, 2022, 177, 706-726.	1.2	2
4	Carbon ion irradiation effects on surface modifications and field emission properties of molybdenum. Applied Physics A: Materials Science and Processing, 2022, 128, .	2.3	3
5	Investigation of number density, temperature, and kinetic energy of nanosecond laser-induced Zr plasma species for self-generated electric and magnetic fields in axial expansion of plume. Journal of the Optical Society of America B: Optical Physics, 2022, 39, 1986.	2.1	1
6	Langmuir probe characterization of spatially confined laser-induced Bismuth plasma. Optik, 2022, 266, 169566.	2.9	0
7	Measurement of characteristic parameters and self-generated electric and magnetic fields (SGEMFs) of laser-induced aluminum plasma. Applied Physics B: Lasers and Optics, 2021, 127, 1.	2.2	4
8	Evaluation of electron temperature and electron density of laser-ablated Zr plasma by Langmuir probe characterization and its correlation with surface modifications. Laser and Particle Beams, 2020, 38, 84-93.	1.0	2
9	Investigation of Energy and Density of Laser-Ablated Si and Ge Plasma Ions Along With Surface Modifications. IEEE Transactions on Plasma Science, 2020, 48, 4191-4203.	1.3	8
10	Surface, structural, electrical and mechanical modifications of pulsed laser deposited ZrN thin films by implantation of MeV carbon ions. Nuclear Instruments & Methods in Physics Research B, 2019, 448, 61-69.	1.4	15
11	Laser sputtering of Zr under Ar and O2 environments explored by quartz crystal microbalance and SEM analysis. Laser and Particle Beams, 2019, 37, 128-140.	1.0	8
12	Fluence-dependent sputtering yield measurement, surface morphology, crater depth, and hardness of laser-irradiated Zr in N ₂ and Ne environments. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 1945.	2.1	10
13	Femtosecond laser induced periodic surface structures for the enhancement of field emission properties of tungsten. Optical Materials Express, 2019, 9, 3183.	3.0	11
14	Investigation of field emission properties of laser irradiated tungsten. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	9
15	Laser induced surface structuring of Cu for enhancement of field emission properties. Materials Research Express, 2018, 5, 025029.	1.6	4
16	EFFECT OF SUBSTRATE TEMPERATURE ON THE GROWTH OF COPPER OXIDE THIN FILMS DEPOSITED BY PULSED LASER DEPOSITION TECHNIQUE. Surface Review and Letters, 2018, 25, 1850053.	1.1	15
17	Surface morphology correlated with sputtering yield measurements of laser-ablated iron. Laser and Particle Beams, 2018, 36, 427-441.	1.0	8
18	Optical emission spectroscopy of magnetically confined laser induced vanadium pentoxide (V2O5) plasma. Physics of Plasmas, 2017, 24, 083112.	1.9	23

Khaliq Mahmood

#	Article	IF	CITATIONS
19	The role of spatial confinement for improvement of laser-induced Mg plasma parameters and growth of surface features. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	2.3	10
20	Laser Induced Surface Morphology of Molybdenum Correlated with Breakdown Spectroscopy. Plasma Chemistry and Plasma Processing, 2017, 37, 287-304.	2.4	11
21	Spectroscopic and morphological study of laser ablated Titanium. Optics and Spectroscopy (English) Tj ETQq1 1	0.784314 0.6	rgBT /Over
22	Nanosecond pulsed laser ablation of Ge investigated by employing photoacoustic deflection technique and SEM analysis. Physica B: Condensed Matter, 2016, 490, 31-41.	2.7	12
23	CARBON ION IRRADIATION EFFECTS ON PULSED LASER DEPOSITED TITANIUM NITRIDE THIN FILMS. Surface Review and Letters, 2015, 22, 1550020.	1.1	4
24	Morphological and spectroscopic characterization of laser-ablated tungsten at various laser irradiances. Applied Physics A: Materials Science and Processing, 2015, 119, 859-870.	2.3	28
25	Pulsed laser ablation of Germanium under vacuum and hydrogen environments at various fluences. Applied Surface Science, 2015, 344, 146-158.	6.1	31
26	Surface and morphological features of laser-irradiated silicon under vacuum, nitrogen and ethanol. Applied Surface Science, 2015, 357, 2415-2425.	6.1	8
27	Effect of laser irradiance on the surface morphology and laser induced plasma parameters of zinc. Laser and Particle Beams, 2014, 32, 119-128.	1.0	35
28	Nanosecond pulsed laser ablation of brass in a dry and liquid-confined environment. Applied Physics A: Materials Science and Processing, 2013, 110, 389-395.	2.3	28
29	Effect of dry and wet ambient environment on the pulsed laser ablation of titanium. Applied Surface Science, 2013, 270, 49-57.	6.1	60
30	EFFECTS OF SUBSTRATE TEMPERATURE ON STRUCTURAL, OPTICAL AND SURFACE MORPHOLOGICAL PROPERTIES OF PULSED LASER DEPOSITED ZnO THIN FILMS. Surface Review and Letters, 2013, 20, 1350032.	1.1	15
31	Effect of ambient environment on excimer laser induced micro and nano-structuring of stainless steel. Applied Surface Science, 2012, 261, 101-109.	6.1	37
32	Effect of ambient gas conditions on laser-induced copper plasma and surface morphology. Physica Scripta, 2012, 85, 015702.	2.5	69
33	Influence of ambient gas and its pressure on the laser-induced breakdown spectroscopy and the surface morphology of laser-ablated Cd. Applied Physics A: Materials Science and Processing, 2012, 107, 203-212.	2.3	79