
## Rodrigo F M De Almeida

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10913128/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Sphingomyelin/Phosphatidylcholine/Cholesterol Phase Diagram: Boundaries and Composition of Lipid<br>Rafts. Biophysical Journal, 2003, 85, 2406-2416.                                                                                              | 0.5 | 796       |
| 2  | Lipid Rafts have Different Sizes Depending on Membrane Composition: A Time-resolved Fluorescence<br>Resonance Energy Transfer Study. Journal of Molecular Biology, 2005, 346, 1109-1120.                                                          | 4.2 | 288       |
| 3  | Ceramide-Domain Formation and Collapse in Lipid Rafts: Membrane Reorganization by an Apoptotic<br>Lipid. Biophysical Journal, 2007, 92, 502-516.                                                                                                  | 0.5 | 169       |
| 4  | Sphingomyelin and sphingomyelin synthase (SMS) in the malignant transformation of glioma cells and<br>in 2-hydroxyoleic acid therapy. Proceedings of the National Academy of Sciences of the United States<br>of America, 2011, 108, 19569-19574. | 7.1 | 142       |
| 5  | Cholesterol-rich Fluid Membranes Solubilize Ceramide Domains. Journal of Biological Chemistry, 2009, 284, 22978-22987.                                                                                                                            | 3.4 | 127       |
| 6  | Complexity of Lipid Domains and Rafts in Giant Unilamellar Vesicles Revealed by Combining Imaging and<br>Microscopic and Macroscopic Time-Resolved Fluorescence. Biophysical Journal, 2007, 93, 539-553.                                          | 0.5 | 125       |
| 7  | Membrane lipid domains and rafts: current applications of fluorescence lifetime spectroscopy and imaging. Chemistry and Physics of Lipids, 2009, 157, 61-77.                                                                                      | 3.2 | 125       |
| 8  | Ceramide-platform formation and -induced biophysical changes in a fluid phospholipid membrane.<br>Molecular Membrane Biology, 2006, 23, 137-148.                                                                                                  | 2.0 | 119       |
| 9  | Formation of Ceramide/Sphingomyelin Gel Domains in the Presence of an Unsaturated Phospholipid: A<br>Quantitative Multiprobe Approach. Biophysical Journal, 2007, 93, 1639-1650.                                                                  | 0.5 | 118       |
| 10 | Membrane Domain Formation, Interdigitation, and Morphological Alterations Induced by the Very<br>Long Chain Asymmetric C24:1 Ceramide. Biophysical Journal, 2008, 95, 2867-2879.                                                                  | 0.5 | 104       |
| 11 | Gel Domains in the Plasma Membrane of Saccharomyces cerevisiae. Journal of Biological Chemistry, 2011, 286, 5043-5054.                                                                                                                            | 3.4 | 94        |
| 12 | Screening organometallic binuclear thiosemicarbazone ruthenium complexes as potential<br>anti-tumour agents: cytotoxic activity and human serum albumin binding mechanism. Dalton<br>Transactions, 2013, 42, 7131.                                | 3.3 | 83        |
| 13 | Nonequilibrium Phenomena in the Phase Separation of a Two-Component Lipid Bilayer. Biophysical<br>Journal, 2002, 82, 823-834.                                                                                                                     | 0.5 | 76        |
| 14 | Lateral Distribution of the Transmembrane Domain of Influenza Virus Hemagglutinin Revealed by<br>Time-resolved Fluorescence Imaging. Journal of Biological Chemistry, 2009, 284, 15708-15716.                                                     | 3.4 | 73        |
| 15 | [Rull(η5-C5H5)(bipy)(PPh3)]+, a promising large spectrum antitumor agent: Cytotoxic activity and interaction with human serum albumin. Journal of Inorganic Biochemistry, 2012, 117, 261-269.                                                     | 3.5 | 72        |
| 16 | Modulation of plasma membrane lipid profile and microdomains by H2O2 in Saccharomyces cerevisiae.<br>Free Radical Biology and Medicine, 2009, 46, 289-298.                                                                                        | 2.9 | 49        |
| 17 | Ethanol effects on binary and ternary supported lipid bilayers with gel/fluid domains and lipid rafts.<br>Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 405-414.                                                                      | 2.6 | 49        |
| 18 | Cholesterol Modulates the Organization of the γM4 Transmembrane Domain of the Muscle Nicotinic<br>Acetylcholine Receptor. Biophysical Journal, 2004, 86, 2261-2272.                                                                               | 0.5 | 46        |

Rodrigo F M De Almeida

| #  | Article                                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | FRET analysis of domain formation and properties in complex membrane systems. Biochimica Et<br>Biophysica Acta - Biomembranes, 2009, 1788, 209-224.                                                                                                           | 2.6  | 46        |
| 20 | Sphingolipid hydroxylation in mammals, yeast and plants – An integrated view. Progress in Lipid Research, 2018, 71, 18-42.                                                                                                                                    | 11.6 | 45        |
| 21 | Differential targeting of membrane lipid domains by caffeic acid and its ester derivatives. Free Radical<br>Biology and Medicine, 2018, 115, 232-245.                                                                                                         | 2.9  | 42        |
| 22 | Crystallization around solid-like nanosized docks can explain the specificity, diversity, and stability of membrane microdomains. Frontiers in Plant Science, 2014, 5, 72.                                                                                    | 3.6  | 41        |
| 23 | The role of membrane fatty acid remodeling in the antitumor mechanism of action of 2-hydroxyoleic acid. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 1405-1413.                                                                                  | 2.6  | 39        |
| 24 | Interaction of peptides with binary phospholipid membranes: application of fluorescence methodologies. Chemistry and Physics of Lipids, 2003, 122, 77-96.                                                                                                     | 3.2  | 34        |
| 25 | Biomimetic membrane rafts stably supported on unmodified gold. Soft Matter, 2012, 8, 2007-2016.                                                                                                                                                               | 2.7  | 30        |
| 26 | The photophysics of a Rhodamine head labeled phospholipid in the identification and characterization of membrane lipid phases. Chemistry and Physics of Lipids, 2012, 165, 311-319.                                                                           | 3.2  | 30        |
| 27 | Detection and Characterization of Membrane Microheterogeneity by Resonance Energy Transfer.<br>Journal of Fluorescence, 2001, 11, 197-209.                                                                                                                    | 2.5  | 29        |
| 28 | Structural and Dynamic Characterization of the Interaction of the Putative Fusion Peptide of the S2<br>SARS-CoV Virus Protein with Lipid Membranes. Journal of Physical Chemistry B, 2008, 112, 6997-7007.                                                    | 2.6  | 29        |
| 29 | Applications of Fluorescence Lifetime Spectroscopy and Imaging to Lipid Domains In Vivo. Methods in<br>Enzymology, 2012, 504, 57-81.                                                                                                                          | 1.0  | 28        |
| 30 | Quercetin dual interaction at the membrane level. Chemical Communications, 2019, 55, 1750-1753.                                                                                                                                                               | 4.1  | 27        |
| 31 | Is There a Preferential Interaction between Cholesterol and Tryptophan Residues in Membrane<br>Proteins?. Biochemistry, 2008, 47, 2638-2649.                                                                                                                  | 2.5  | 26        |
| 32 | Biophysical properties of ergosterol-enriched lipid rafts in yeast and tools for their study:<br>characterization of ergosterol/phosphatidylcholine membranes with three fluorescent membrane<br>probes. Chemistry and Physics of Lipids, 2012, 165, 577-588. | 3.2  | 26        |
| 33 | Changes in Membrane Organization upon Spontaneous Insertion of 2-Hydroxylated Unsaturated Fatty<br>Acids in the Lipid Bilayer. Langmuir, 2014, 30, 2117-2128.                                                                                                 | 3.5  | 26        |
| 34 | Organization and Dynamics of Fas Transmembrane Domain in Raft Membranes and Modulation by<br>Ceramide. Biophysical Journal, 2011, 101, 1632-1641.                                                                                                             | 0.5  | 23        |
| 35 | Studies on the mechanism of action of antitumor bis(aminophenolate) ruthenium(III) complexes.<br>Journal of Inorganic Biochemistry, 2017, 168, 27-37.                                                                                                         | 3.5  | 23        |
| 36 | Development of lysosome-mimicking vesicles to study the effect of abnormal accumulation of sphingosine on membrane properties. Scientific Reports, 2017, 7, 3949.                                                                                             | 3.3  | 23        |

## Rodrigo F M De Almeida

| #  | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Structure and dynamics of the γM4 transmembrane domain of the acetylcholine receptor in lipid<br>bilayers: insights into receptor assembly and function. Molecular Membrane Biology, 2006, 23, 305-315.          | 2.0 | 21        |
| 38 | The extracellular matrix modulates H2O2 degradation and redox signaling in endothelial cells. Redox<br>Biology, 2015, 6, 454-460.                                                                                | 9.0 | 21        |
| 39 | Formation and Properties of Membrane-Ordered Domains by Phytoceramide: Role of Sphingoid Base<br>Hydroxylation. Langmuir, 2015, 31, 9410-9421.                                                                   | 3.5 | 20        |
| 40 | Liquid-Ordered Phase Formation by Mammalian and Yeast Sterols: A Common Feature With Organizational Differences. Frontiers in Cell and Developmental Biology, 2020, 8, 337.                                      | 3.7 | 20        |
| 41 | Biophysical Implications of Sphingosine Accumulation in Membrane Properties at Neutral and Acidic pH. Journal of Physical Chemistry B, 2014, 118, 4858-4866.                                                     | 2.6 | 19        |
| 42 | Sphingolipidâ€enriched domains in fungi. FEBS Letters, 2020, 594, 3698-3718.                                                                                                                                     | 2.8 | 19        |
| 43 | A Biomimetic Platform to Study the Interactions of Bioelectroactive Molecules with Lipid Nanodomains. Langmuir, 2014, 30, 12627-12637.                                                                           | 3.5 | 16        |
| 44 | Interaction with Blood Proteins of a Ruthenium(II) Nitrofuryl Semicarbazone Complex: Effect on the Antitumoral Activity. Molecules, 2019, 24, 2861.                                                              | 3.8 | 15        |
| 45 | Reorganization of plasma membrane lipid domains during conidial germination. Biochimica Et<br>Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 156-166.                                       | 2.4 | 12        |
| 46 | C-Glucosylation as a tool for the prevention of PAINS-induced membrane dipole potential alterations.<br>Scientific Reports, 2021, 11, 4443.                                                                      | 3.3 | 12        |
| 47 | Changes in the Biophysical Properties of the Cell Membrane Are Involved in the Response of Neurospora crassa to Staurosporine. Frontiers in Physiology, 2018, 9, 1375.                                           | 2.8 | 10        |
| 48 | A route to understanding yeast cellular envelope – plasma membrane lipids interplaying in cell wall<br>integrity. FEBS Journal, 2018, 285, 2402-2404.                                                            | 4.7 | 10        |
| 49 | Interaction of a peptide corresponding to the loop domain of the S2 SARS-CoV virus protein with model membranes. Molecular Membrane Biology, 2009, 26, 236-248.                                                  | 2.0 | 9         |
| 50 | Yeast Sphingolipid-Enriched Domains and Membrane Compartments in the Absence of Mannosyldiinositolphosphorylceramide. Biomolecules, 2020, 10, 871.                                                               | 4.0 | 9         |
| 51 | Application of Fluorescence to Understand the Interaction of Peptides with Binary Lipid Membranes.<br>Reviews in Fluorescence, 2005, , 271-323.                                                                  | 0.5 | 2         |
| 52 | Biophysical Analysis of Lipid Domains in Mammalian and Yeast Membranes by Fluorescence<br>Spectroscopy. Methods in Molecular Biology, 2021, 2187, 247-269.                                                       | 0.9 | 2         |
| 53 | Biophysical Analysis of Lipid Domains by Fluorescence Microscopy. Methods in Molecular Biology, 2021, 2187, 223-245.                                                                                             | 0.9 | 2         |
| 54 | Biophysical impact of sphingosine and other abnormal lipid accumulation in Niemann-Pick disease type<br>C cell models. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2021, 1866, 158944. | 2.4 | 1         |