
Paul D Brooks

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10912034/publications.pdf Version: 2024-02-01

PALLE D RECORS

#	Article	IF	CITATIONS
1	Inorganic nitrogen and microbial biomass dynamics before and during spring snowmelt. Biogeochemistry, 1998, 43, 1-15.	3.5	312
2	Microbial activity under alpine snowpacks, Niwot Ridge, Colorado. Biogeochemistry, 1996, 32, 93.	3.5	283
3	Winter production of CO2 and N2O from alpine tundra: environmental controls and relationship to inter-system C and N fluxes. Oecologia, 1997, 110, 403-413.	2.0	253
4	Snowpack controls on nitrogen cycling and export in seasonally snow-covered catchments. Hydrological Processes, 1999, 13, 2177-2190.	2.6	244
5	Cascading impacts of bark beetleâ€caused tree mortality on coupled biogeophysical and biogeochemical processes. Frontiers in Ecology and the Environment, 2012, 10, 416-424.	4.0	215
6	Hydrological partitioning in the critical zone: Recent advances and opportunities for developing transferable understanding of water cycle dynamics. Water Resources Research, 2015, 51, 6973-6987.	4.2	189
7	Carbon limitation of soil respiration under winter snowpacks: potential feedbacks between growing season and winter carbon fluxes. Global Change Biology, 2005, 11, 231-238.	9.5	185
8	Carbon and Nitrogen Cycling in Snow-Covered Environments. Geography Compass, 2011, 5, 682-699.	2.7	177
9	Interactions Between Biogeochemistry and Hydrologic Systems. Annual Review of Environment and Resources, 2009, 34, 65-96.	13.4	138
10	Ecohydrological controls on snowmelt partitioning in mixed onifer subâ€alpine forests. Ecohydrology, 2009, 2, 129-142.	2.4	137
11	Spatial scale dependence of ecohydrologically mediated water balance partitioning: A synthesis framework for catchment ecohydrology. Water Resources Research, 2011, 47, .	4.2	133
12	Mineral nitrogen transformations in and under seasonal snow in a high-elevation catchment in the Rocky Mountains, United States. Water Resources Research, 1996, 32, 3161-3171.	4.2	114
13	Controls on nitrogen flux in alpine/subalpine watersheds of Colorado. Water Resources Research, 2000, 36, 37-47.	4.2	113
14	How Water, Carbon, and Energy Drive Critical Zone Evolution: The Jemez–Santa Catalina Critical Zone Observatory. Vadose Zone Journal, 2011, 10, 884-899.	2.2	111
15	Changes in snow accumulation and ablation following the Las Conchas Forest Fire, New Mexico, USA. Ecohydrology, 2014, 7, 440-452.	2.4	108
16	Influence of groundwater flowpaths, residence times and nutrients on the extent of microbial methanogenesis in coal beds: Powder River Basin, USA. Chemical Geology, 2011, 284, 45-61.	3.3	102
17	Nitrogen and Carbon Soil Dynamics in Response to Climate Change in a High-Elevation Ecosystem in the Rocky Mountains, U.S.A Arctic and Alpine Research, 1998, 30, 26.	1.3	100
18	Recent tree dieâ€off has little effect on streamflow in contrast to expected increases from historical studies. Water Resources Research, 2015, 51, 9775-9789.	4.2	97

PAUL D BROOKS

#	Article	IF	CITATIONS
19	Soil moisture response to snowmelt timing in mixedâ€conifer subalpine forests. Hydrological Processes, 2015, 29, 2782-2798.	2.6	92
20	Plant hydraulics improves and topography mediates prediction of aspen mortality in southwestern <scp>USA</scp> . New Phytologist, 2017, 213, 113-127.	7.3	77
21	Natural variability in N export from headwater catchments: snow cover controls on ecosystem N retention. Hydrological Processes, 1999, 13, 2191-2201.	2.6	76
22	Coevolution of nonlinear trends in vegetation, soils, and topography with elevation and slope aspect: A case study in the sky islands of southern Arizona. Journal of Geophysical Research F: Earth Surface, 2013, 118, 741-758.	2.8	76
23	Quantifying regional scale ecosystem response to changes in precipitation: Not all rain is created equal. Water Resources Research, 2011, 47, .	4.2	69
24	Rare earth elements as reactive tracers of biogeochemical weathering in forested rhyolitic terrain. Chemical Geology, 2015, 391, 19-32.	3.3	67
25	Seasonal and interannual variation of streamflow pathways and biogeochemical implications in semiâ€arid, forested catchments in Valles Caldera, New Mexico. Ecohydrology, 2008, 1, 239-252.	2.4	64
26	Topographically driven differences in energy and water constrain climatic control on forest carbon sequestration. Ecosphere, 2017, 8, e01797.	2.2	61
27	Stream water carbon controls in seasonally snow-covered mountain catchments: impact of inter-annual variability of water fluxes, catchment aspect and seasonal processes. Biogeochemistry, 2014, 118, 273-290.	3.5	60
28	Critical Zone Services: Expanding Context, Constraints, and Currency beyond Ecosystem Services. Vadose Zone Journal, 2015, 14, vzj2014.10.0142.	2.2	60
29	Physical and biological controls on trace gas fluxes in semi-arid urban ephemeral waterways. Biogeochemistry, 2014, 121, 189-207.	3.5	58
30	Geochemical evolution of the <scp>C</scp> ritical <scp>Z</scp> one across variable time scales informs concentrationâ€discharge relationships: <scp>J</scp> emez <scp>R</scp> iver <scp>B</scp> asin <scp>C</scp> ritical <scp>Z</scp> one <scp>O</scp> bservatory. Water Resources Research, 2017, 53, 4169-4196.	4.2	57
31	Influence of terrain aspect on water partitioning, vegetation structure and vegetation greening in highâ€elevation catchments in northern New Mexico. Ecohydrology, 2016, 9, 782-795.	2.4	55
32	Regional sensitivities of seasonal snowpack to elevation, aspect, and vegetation cover in western <scp>N</scp> orth <scp>A</scp> merica. Water Resources Research, 2017, 53, 6908-6926.	4.2	54
33	Organic and inorganic nitrogen pools in talus fields and subtalus water, Green Lakes Valley, Colorado Front Range. Hydrological Processes, 1997, 11, 1747-1760.	2.6	50
34	Effects of vegetation, albedo, and solar radiation sheltering on the distribution of snow in the Valles Caldera, New Mexico. Ecohydrology, 2008, 1, 253-270.	2.4	50
35	Climatic and landscape influences on soil moisture are primary determinants of soil carbon fluxes in seasonally snow-covered forest ecosystems. Biogeochemistry, 2015, 123, 447-465.	3.5	50
36	The Landscape Evolution Observatory: A large-scale controllable infrastructure to study coupled Earth-surface processes. Geomorphology, 2015, 244, 190-203.	2.6	47

PAUL D BROOKS

#	Article	IF	CITATIONS
37	High Atmospheric Nitrate Inputs and Nitrogen Turnover in Semi-arid Urban Catchments. Ecosystems, 2014, 17, 1309-1325.	3.4	46
38	Climatic and landscape controls on water transit times and silicate mineral weathering in the critical zone. Water Resources Research, 2015, 51, 6036-6051.	4.2	43
39	Dissolved organic matter transport reflects hillslope to stream connectivity during snowmelt in a montane catchment. Water Resources Research, 2016, 52, 4905-4923.	4.2	38
40	Land cover controls on summer discharge and runoff solution chemistry of semi-arid urban catchments. Journal of Hydrology, 2013, 485, 37-53.	5.4	35
41	Unraveling the mysteries of the large watershed black box: Implications for the streamflow response to climate and landscape perturbations. Geophysical Research Letters, 2012, 39, .	4.0	34
42	Persistent Urban Influence on Surface Water Quality via Impacted Groundwater. Environmental Science & Technology, 2017, 51, 9477-9487.	10.0	34
43	Stream Nitrogen Inputs Reflect Groundwater Across a Snowmelt-Dominated Montane to Urban Watershed. Environmental Science & Technology, 2016, 50, 1137-1146.	10.0	31
44	Spatial variability in dissolved organic matter and inorganic nitrogen concentrations in a semiarid stream, San Pedro River, Arizona. Journal of Geophysical Research, 2007, 112, n/a-n/a.	3.3	29
45	Combined impact of catchment size, land cover, and precipitation on streamflow and total dissolved nitrogen: A global comparative analysis. Global Biogeochemical Cycles, 2015, 29, 1109-1121.	4.9	27
46	Nitrogen Sources and Sinks Within the Middle Rio Grande, New Mexico. Journal of the American Water Resources Association, 2007, 43, 850-863.	2.4	25
47	Nitrogen dynamics in two high elevation catchments during spring snowmelt 1996, Rocky Mountains, Colorado. Hydrological Processes, 1999, 13, 2203-2214.	2.6	23
48	Estimated Ultraviolet Radiation Doses in Wetlands in Six National Parks. Ecosystems, 2005, 8, 462-477.	3.4	23
49	Monitoring the timing of snowmelt and the initiation of streamflow using a distributed network of temperature/light sensors. Ecohydrology, 2008, 1, 215-224.	2.4	22
50	Temporal patterns and controls on runoff magnitude and solution chemistry of urban catchments in the semiarid southwestern United States. Hydrological Processes, 2013, 27, 995-1010.	2.6	21
51	Hillslope Hydrology Influences the Spatial and Temporal Patterns of Remotely Sensed Ecosystem Productivity. Water Resources Research, 2020, 56, e2020WR027630.	4.2	21
52	Seasonal variability in the concentration and flux of organic matter and inorganic nitrogen in a semiarid catchment, San Pedro River, Arizona. Journal of Geophysical Research, 2007, 112, .	3.3	18
53	A net ecosystem carbon budget for snow dominated forested headwater catchments: linking water and carbon fluxes to critical zone carbon storage. Biogeochemistry, 2018, 138, 225-243.	3.5	17
54	Plant Hydraulic Stress Explained Tree Mortality and Tree Size Explained Beetle Attack in a Mixed Conifer Forest. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 3555-3568.	3.0	16

PAUL D BROOKS

#	Article	IF	CITATIONS
55	Interactive Effects of Vegetation Type and Topographic Position on Nitrogen Availability and Loss in a Temperate Montane Ecosystem. Ecosystems, 2017, 20, 1073-1088.	3.4	15
56	Groundwaterâ€Mediated Memory of Past Climate Controls Water Yield in Snowmeltâ€Dominated Catchments. Water Resources Research, 2021, 57, e2021WR030605.	4.2	14
57	Spatial and Temporal Variability in the Amount and Source of Dissolved Organic Carbon: Implications for Ultraviolet Exposure in Amphibian Habitats. Ecosystems, 2005, 8, 478-487.	3.4	13
58	Quantifying the effects of stream channels on storm water quality in a semi-arid urban environment. Journal of Hydrology, 2012, 470-471, 98-110.	5.4	13
59	Winter production of CO. Oecologia, 1997, 110, 403.	2.0	12
60	Lateral subsurface flow modulates forest mortality risk to future climate and elevated CO ₂ . Environmental Research Letters, 2021, 16, 084015.	5.2	10
61	Riparian zones attenuate nitrogen loss following bark beetleâ€induced lodgepole pine mortality. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 933-948.	3.0	9
62	Influence of climate variability on water partitioning and effective energy and mass transfer in a semi-arid critical zone. Hydrology and Earth System Sciences, 2016, 20, 1103-1115.	4.9	8
63	Increasing plant water stress and decreasing summer streamflow in response to a warmer and wetter climate in seasonally snowâ€covered forests. Ecohydrology, 2021, 14, .	2.4	7
64	Strontium isotope dynamics reveal streamflow contributions from shallow flow paths during snowmelt in a montane watershed, Provo River, Utah, USA. Hydrological Processes, 2022, 36, .	2.6	3
65	The Wasatch Environmental Observatory: A mountain to urban research network in the semiâ€arid western US. Hydrological Processes, 2021, 35, e14352.	2.6	2