Jonathan King

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10910632/publications.pdf

Version: 2024-02-01

20817 36028 10,583 148 60 97 citations h-index g-index papers 149 149 149 4758 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Congressional Budget Responses to the Pandemic: Fund Health Care, Not Warfare. American Journal of Public Health, 2021, 111, 200-201.	2.7	1
2	Hydro-epidemiological modelling of bacterial transport and decay in nearshore coastal waters. Water Research, 2021, 196, 117049.	11.3	10
3	Cataract. Nature Reviews Disease Primers, 2015, 1, 15014.	30.5	90
4	Tyrosine/Cysteine Cluster Sensitizing Human \hat{I}^3 D-Crystallin to Ultraviolet Radiation-Induced Photoaggregation in Vitro. Biochemistry, 2014, 53, 979-990.	2.5	25
5	Tryptophan Cluster Protects Human γDâ€Crystallin from Ultraviolet Radiationâ€Induced Photoaggregation <i>In Vitro</i> . Photochemistry and Photobiology, 2013, 89, 1106-1115.	2.5	49
6	The C-terminal cysteine annulus participates in auto-chaperone function for Salmonellaphage P22 tailspike folding and assembly. Bacteriophage, 2012, 2, 36-49.	1.9	3
7	Contributions of aromatic pairs to the folding and stability of longâ€lived human γDâ€crystallin. Protein Science, 2011, 20, 513-528.	7.6	41
8	Zernike Phase Contrast Cryo-Electron Microscopy and Tomography for Structure Determination at Nanometer and Subnanometer Resolutions. Structure, 2010, 18, 903-912.	3.3	118
9	Ubiquitin Proteasome Pathway–Mediated Degradation of Proteins: Effects Due to Site-Specific Substrate Deamidation. , 2010, 51, 4164.		30
10	Formation of Amyloid Fibrils In Vitro from Partially Unfolded Intermediates of Human \hat{I}^3 C-Crystallin. , 2010, 51, 672.		70
11	Partially Folded Aggregation Intermediates of Human γD-, γC-, and γS-Crystallin Are Recognized and Bound by Human αB-Crystallin Chaperone. Journal of Molecular Biology, 2010, 401, 134-152.	4.2	61
12	Hydrophobic Core Mutations Associated with Cataract Development in Mice Destabilize Human Î ³ D-Crystallin. Journal of Biological Chemistry, 2009, 284, 33285-33295.	3.4	50
13	Mechanism of the Very Efficient Quenching of Tryptophan Fluorescence in Human γD- and γS-Crystallins: The γ-Crystallin Fold May Have Evolved To Protect Tryptophan Residues from Ultraviolet Photodamage. Biochemistry, 2009, 48, 3708-3716.	2.5	84
14	Femtosecond Fluorescence Spectra of Tryptophan in Human \hat{I}^3 -Crystallin Mutants: Site-Dependent Ultrafast Quenching. Journal of the American Chemical Society, 2009, 131, 16751-16757.	13.7	44
15	The Structure of the Cataract-Causing P23T Mutant of Human \hat{I}^3 D-Crystallin Exhibits Distinctive Local Conformational and Dynamic Changes,. Biochemistry, 2009, 48, 2597-2609.	2.5	57
16	Backbone structure of the infectious $\hat{l}\mu 15$ virus capsid revealed by electron cryomicroscopy. Nature, 2008, 451, 1130-1134.	27.8	204
17	Mechanism of the Efficient Tryptophan Fluorescence Quenching in Human γD-Crystallin Studied by Time-Resolved Fluorescence. Biochemistry, 2008, 47, 10705-10721.	2.5	54
18	Human \hat{I}^3 crystallins form fibrillar amyloid aggregates through a partially unfolded intermediate. FASEB Journal, 2008, 22, 1010.3.	0.5	0

#	Article	IF	Citations
19	Mutations associated with early cataract development in mice destabilize human gammaDâ€crystallin. FASEB Journal, 2008, 22, 232-232.	0.5	O
20	Formation of amyloid fibrils in vitro by human gammaD-crystallin and its isolated domains. Molecular Vision, 2008, 14, 81-9.	1.1	61
21	Genome Sequence, Structural Proteins, and Capsid Organization of the Cyanophage Syn5: A "Horned― Bacteriophage of Marine Synechococcus. Journal of Molecular Biology, 2007, 368, 966-981.	4.2	92
22	Genomic and structural analysis of Syn9, a cyanophage infecting marineProchlorococcusandSynechococcus. Environmental Microbiology, 2007, 9, 1675-1695.	3.8	158
23	Mechanism of the Highly Efficient Quenching of Tryptophan Fluorescence in Human γD-Crystallinâ€. Biochemistry, 2006, 45, 11552-11563.	2.5	86
24	Fold recognition and accurate sequence-structure alignment of sequences directing Î ² -sheet proteins. Proteins: Structure, Function and Bioinformatics, 2006, 63, 976-985.	2.6	24
25	Structure of epsilon15 bacteriophage reveals genome organization and DNA packaging/injection apparatus. Nature, 2006, 439, 612-616.	27.8	280
26	Frequencies of hydrophobic and hydrophilic runs and alternations in proteins of known structure. Protein Science, 2006, 15, 102-112.	7.6	42
27	Cryo-EM Asymmetric Reconstruction of Bacteriophage P22 Reveals Organization of its DNA Packaging and Infecting Machinery. Structure, 2006, 14, 1073-1082.	3.3	149
28	An elongated spine of buried core residues necessary for in vivo folding of the parallel beta-helix of P22 tailspike adhesin. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3575-3580.	7.1	29
29	Glutamine Deamidation Destabilizes Human \hat{I}^3 D-Crystallin and Lowers the Kinetic Barrier to Unfolding. Journal of Biological Chemistry, 2006, 281, 30782-30793.	3.4	108
30	Amino Acid Sequence Control of the Folding of the Parallel \hat{l}^2 -Helix, the Simplest \hat{l}^2 -Sheet Fold. Lecture Notes in Computer Science, 2005, , 472-473.	1.3	0
31	Interdomain side-chain interactions in human γD crystallin influencing folding and stability. Protein Science, 2005, 14, 2030-2043.	7.6	92
32	Aggregation of granulocyte-colony stimulating factor in vitro involves a conformationally altered monomeric state. Protein Science, 2005, 14, 2246-2257.	7.6	102
33	Monoclonal Antibody Epitope Mapping Describes Tailspike Î ² -Helix Folding and Aggregation Intermediates. Journal of Biological Chemistry, 2005, 280, 23032-23040.	3.4	10
34	Wrap-and-Pack: A New Paradigm for Beta Structural Motif Recognition with Application to Recognizing Beta Trefoils. Journal of Computational Biology, 2005, 12, 777-795.	1.6	8
35	Lattice Transformations and Subunit Conformational Changes in Phage Capsid Maturation. Journal of Theoretical Medicine, 2005, 6, 99-105.	0.5	1
36	Stalled Folding Mutants in the Triple \hat{I}^2 -Helix Domain of the Phage P22 Tailspike Adhesin. Journal of Molecular Biology, 2005, 354, 1103-1117.	4.2	6

#	Article	IF	CITATIONS
37	Contributions of hydrophobic domain interface interactions to the folding and stability of human ÂD-crystallin. Protein Science, 2005, 14, 569-581.	7.6	93
38	Protein Folding Failure Sets High-Temperature Limit on Growth of Phage P22 in Salmonella enterica Serovar Typhimurium. Applied and Environmental Microbiology, 2004, 70, 4840-4847.	3.1	17
39	Wrap-and-pack., 2004, , .		2
40	Buried hydrophobic side-chains essential for the folding of the parallel \hat{l}^2 -helix domains of the P22 tailspike. Protein Science, 2004, 13, 2291-2303.	7.6	16
41	Probing folding and fluorescence quenching in human γD crystallin Greek key domains using triple tryptophan mutant proteins. Protein Science, 2004, 13, 2223-2235.	7.6	92
42	In vitro unfolding, refolding, and polymerization of human gammaD crystallin, a protein involved in cataract formation. Protein Science, 2003, 12, 480-490.	7.6	156
43	Homotrimeric, \hat{l}^2 -Stranded Viral Adhesins and Tail Proteins. Journal of Bacteriology, 2003, 185, 4022-4030.	2.2	57
44	Predicting the Beta-Helix Fold from Protein Sequence Data. Journal of Computational Biology, 2002, 9, 261-276.	1.6	37
45	Characterization of the Protrimer Intermediate in the Folding Pathway of the Interdigitated β-Helix Tailspike Proteinâ€. Biochemistry, 2002, 41, 5093-5103.	2.5	22
46	Cyanobacterial photosynthesis in the oceans: the origins and significance of divergent light-harvesting strategies. Trends in Microbiology, 2002, 10, 134-142.	7.7	305
47	The interdigitated beta-helix domain of the P22 tailspike protein acts as a molecular clamp in trimer stabilization. Protein Science, 2002, 11, 820-830.	7.6	32
48	Distinct cysteine sulfhydryl environments detected by analysis of Raman S-H markers of Cysâ†'Ser mutant proteins11Edited by P. E. Wright. Journal of Molecular Biology, 2001, 307, 899-911.	4.2	90
49	Frequencies of amino acid strings in globular protein sequences indicate suppression of blocks of consecutive hydrophobic residues. Protein Science, 2001, 10, 1023-1031.	7.6	83
50	Role for cysteine residues in the in vivo folding and assembly of the phage P22 tailspike. Protein Science, 2001, 10, 397-410.	7.6	28
51	A Newly Synthesized, Ribosome-bound Polypeptide Chain Adopts Conformations Dissimilar from Early in VitroRefolding Intermediates. Journal of Biological Chemistry, 2001, 276, 25411-25420.	3.4	71
52	Phycobiliprotein genes of the marine photosynthetic prokaryote Prochlorococcus: evidence for rapid evolution of genetic heterogeneity. Microbiology (United Kingdom), 2001, 147, 3171-3182.	1.8	33
53	βâ€Helix core packing within the tripleâ€stranded oligomerization domain of the P22 tailspike. Protein Science, 2000, 9, 2338-2343.	7.6	24
54	Visualization of the maturation transition in bacteriophage P22 by electron cryomicroscopy. Journal of Molecular Biology, 2000, 297, 615-626.	4.2	68

#	Article	IF	CITATIONS
55	In Vitro Unfolding/Refolding of Wild Type Phage P22 Scaffolding Protein Reveals Capsid-binding Domain. Journal of Biological Chemistry, 1999, 274, 16135-16140.	3.4	19
56	Folding and Stability of Mutant Scaffolding Proteins Defective in P22 Capsid Assembly. Journal of Biological Chemistry, 1999, 274, 16141-16146.	3.4	8
57	A green light for protein folding. Nature Biotechnology, 1999, 17, 637-638.	17.5	6
58	There's a right way and a wrong way: in vivo and in vitro folding, misfolding and subunit assembly of the P22 tailspike. Structure, 1999, 7, R131-R139.	3.3	76
59	[22] Detection of early aggregation intermediates by native gel electrophoresis and native Western blotting. Methods in Enzymology, 1999, 309, 333-350.	1.0	21
60	Solution X-Ray Scattering-Based Estimation of Electron Cryomicroscopy Imaging Parameters for Reconstruction of Virus Particles. Biophysical Journal, 1999, 76, 2249-2261.	0.5	34
61	Effects of Oxygen on Recombinant Protein Expression. Biotechnology Progress, 1998, 14, 393-409.	2.6	7 3
62	Cold rescue of the thermolabile tailspike intermediate at the junction between productive folding and offâ€pathway aggregation. Protein Science, 1998, 7, 1516-1523.	7.6	36
63	Role of the Scaffolding Protein in P22 Procapsid Size Determination Suggested by T=4 and T=7 Procapsid Structures. Biophysical Journal, 1998, 74, 559-568.	0.5	90
64	Mutational Effects on Inclusion Body Formation. Advances in Protein Chemistry, 1997, 50, 243-264.	4.4	39
65	Prevalence of temperature sensitive folding mutations in the parallel beta coil domain of the phage P22 tailspike endorhamnosidase. Journal of Molecular Biology, 1997, 267, 88-102.	4.2	48
66	Monitoring the refolding pathway for a large multimeric protein using capillary zone electrophoresis. Journal of Chromatography A, 1997, 769, 315-323.	3.7	19
67	Disulphide-bonded intermediate on the folding and assembly pathway of a non-disulphide bonded protein. Nature Structural Biology, 1997, 4, 450-455.	9.7	57
68	Refolding with a piece of the ring. Nature Biotechnology, 1997, 15, 514-515.	17.5	3
69	Conformation of P22 tailspike folding and aggregation intermediates probed by monoclonal antibodies. Protein Science, 1997, 6, 99-108.	7.6	65
70	Polymerization mechanism of polypeptide chain aggregation., 1997, 54, 333-343.		83
71	Polymerization mechanism of polypeptide chain aggregation. Biotechnology and Bioengineering, 1997, 54, 333-343.	3.3	1
72	Three-dimensional Structure of Scaffolding-containing Phage P22 Procapsids by Electron Cryo-microscopy. Journal of Molecular Biology, 1996, 260, 85-98.	4.2	97

#	Article	IF	CITATIONS
73	Thermolabile folding intermediates: inclusion body precursors and chaperonin substrates. FASEB Journal, 1996, 10, 57-66.	0.5	151
74	Scaffolding Mutants Identifying Domains Required for P22 Procapsid Assembly and Maturation. Virology, 1996, 225, 82-96.	2.4	60
75	Unexpected pathways to protein stabilization. Nature Biotechnology, 1996, 14, 436-436.	17.5	2
76	Specific aggregation of partially folded polypeptide chains: The molecular basis of inclusion body composition. Nature Biotechnology, 1996, 14, 1283-1287.	17.5	301
77	Stability of Wild-type and Temperature-sensitive Protein Subunits of the Phage P22 Capsid. Journal of Biological Chemistry, 1995, 270, 16595-16601.	3.4	27
78	In vitro folding of phage P22 coat protein with amino acid substitutions that confer in vivo temperature sensitivity. Biochemistry, 1995, 34, 6815-6826.	2.5	32
79	Multimeric intermediates in the pathway to the aggregated inclusion body state for P22 tailspike polypeptide chains. Protein Science, 1995, 4, 900-908.	7.6	81
80	Binding of Scaffolding Subunits within the P22 Procapsid Lattice. Virology, 1994, 205, 188-197.	2.4	51
81	Three-dimensional Transformation of Capsids Associated with Genome Packaging in a Bacterial Virus. Journal of Molecular Biology, 1993, 231, 65-74.	4.2	163
82	Inhibition of viral capsid assembly by 1,1'-bis(4-anilinonaphthalene-5-sulfonic acid). Biochemistry, 1993, 32, 10658-10665.	2.5	66
83	Folding of the phage P22 coat protein in vitro. Biochemistry, 1993, 32, 10839-10847.	2.5	57
84	Amino Acid Sequence Determinants of Polypeptide Chain Folding and Inclusion Body Formation. ACS Symposium Series, 1993, , 24-37.	0.5	2
85	Amino acid substitutions influencing intracellular protein folding pathways. FEBS Letters, 1992, 307, 20-25.	2.8	49
86	Folding and assembly of oligomeric proteins in Escherichia coli. Current Opinion in Biotechnology, 1992, 3, 468-473.	6.6	32
87	Mechanisms of Inclusion Body Formation. ACS Symposium Series, 1991, , 35-49.	0.5	19
88	Thermal unfolding pathway for the thermostable P22 tailspike endorhamnosidase. Biochemistry, 1991, 30, 6260-6269.	2.5	67
89	Pathway for the Thermal Unfolding of Wild Type and Mutant Forms of the Thermostable P22 Tailspike Endorhamnosidase. ACS Symposium Series, 1991, , 119-132.	0.5	3
90	Mutations Affecting Protein Folding and Misfolding in Vivo. , 1991, , 129-136.		1

#	Article	IF	Citations
91	Conformational states of the bacteriophage P22 capsid subunit in relation to self-assembly. Biochemistry, 1990, 29, 5626-5633.	2.5	34
92	Conformational stability of P22 tailspike proteins carrying temperature-sensitive folding mutations. Biochemistry, 1990, 29, 4181-4187.	2.5	39
93	Novel second-site suppression of a cold-sensitive defect in phage P22 procapsid assembly. Journal of Molecular Biology, 1990, 216, 701-716.	4.2	28
94	Genetic Analysis of Polypeptide Chain Folding and Misfolding in Vivo. , 1990, , 59-78.		4
95	Protein Folding Intermediates and Inclusion Body Formation Nature Biotechnology, 1989, 7, 690-697.	17.5	273
96	Purification and organization of the gene 1 portal protein required for phage P22 DNA packaging. Biochemistry, 1988, 27, 1849-1856.	2.5	83
97	Scaffolding protein regulates the polymerization of P22 coat subunits into icosahedral shells in vitro. Journal of Molecular Biology, 1988, 202, 743-757.	4.2	186
98	Initiation of P22 procapsid assembly in vivo. Journal of Molecular Biology, 1988, 202, 77-86.	4.2	76
99	Secondary structure and thermostability of the phage P22 tailspike. Journal of Molecular Biology, 1988, 199, 491-502.	4.2	66
100	Nature and distribution of sites of temperature-sensitive folding mutations in the gene for the P22 Tailspike polypeptide chain. Journal of Molecular Biology, 1988, 204, 607-619.	4.2	68
101	Aggregate formation from thermolabile intermediates in the maturation of the thermostable P22 tailspike. Biochemical Society Transactions, 1988, 16, 105-108.	3.4	4
102	Identification of Sites Influencing the Folding and Subunit Assembly of the P22 Tailspike Polypeptide Chain Using Nonsense Mutations. Genetics, 1987, 117, 157-171.	2.9	33
103	The DNA Injection Apparatus of Phage P22. Biophysical Journal, 1986, 49, 24-26.	0.5	22
104	Identification of the 9-aminoacridine/DNA complex responsible for photodynamic inactivation of P22. Biochemistry, 1986, 25, 5858-5864.	2.5	13
105	Genetic Analysis of Protein Folding Pathways. Nature Biotechnology, 1986, 4, 297-303.	17.5	36
106	[13]Mutational analysis of protein folding pathways: The P22 tailspike endorhamnosidase. Methods in Enzymology, 1986, 131, 250-266.	1.0	55
107	A late gene product of phage P22 affecting virus infectivity. Virology, 1985, 143, 368-379.	2.4	7
108	Steps in the stabilization of newly packaged DNA during phage P22 Morphogenesis. Journal of Molecular Biology, 1984, 172, 523-543.	4.2	84

#	Article	IF	CITATIONS
109	DNA injection proteins are targets of acridine-sensitized photoinactivation of bacteriophage P22. Journal of Molecular Biology, 1984, 180, 837-863.	4.2	30
110	Genetic and biochemical analysis ofin vivo protein folding and subunit assembly. Biopolymers, 1983, 22, 125-129.	2.4	9
111	The Use of Salmonella Bacteriophage P22 to Study the Multiple Mechanisms of Acridine-Induced Damage. , 1983, , 79-109.		0
112	The Legal and Legislative Background. Environment, 1982, 24, 24-36.	1.4	0
113	Assembly in vitro of bacteriophage P22 procapsids from purified coat and scaffolding subunits. Journal of Molecular Biology, 1982, 156, 633-665.	4.2	65
114	Structural studies of P22 phage, precursor particles, and proteins by laser Raman spectroscopy. Biochemistry, 1982, 21, 3866-3878.	2.5	42
115	Temperature-sensitive mutants blocked in the folding or subunit assembly of the bacteriophage P22 tail spike protein. Journal of Molecular Biology, 1981, 145, 633-651.	4.2	117
116	Temperature-sensitive mutants blocked in the folding or subunit assembly of the bacteriophage P22 tail spike protein. Journal of Molecular Biology, 1981, 145, 653-676.	4.2	81
117	Purification of the coat and scaffolding proteins from procapsids of bacteriophage P22. Virology, 1981, 112, 529-547.	2.4	65
118	Introduction: From Genes to Organelles. Quarterly Review of Biology, 1980, 55, 329-333.	0.1	0
119	Scaffolding Proteins and the Genetic Control of Virus Shell Assembly. Quarterly Review of Biology, 1980, 55, 369-393.	0.1	20
120	Investigation of secondary structures and macromolecular interactions in bacteriophage p22 by laser raman spectroscopy. Biophysical Journal, 1980, 32, 234-237.	0.5	6
121	Regulation of Structural Protein Interactions as Revealed in Phage Morphogenesis. , 1980, , 101-132.		23
122	TEMPERATURE-SENSITIVE MUTANTS BLOCKED IN THE FOLDING OR SUBUNIT ASSMBLY OF THE BACTERIOPHAGE P22 TAILSPIKE PROTEIN. I. FINE-STRUCTURE MAPPING. Genetics, 1980, 96, 331-352.	2.9	68
123	Structural studies of bacteriophage lambda heads and proheads by small angle X-ray diffraction. Journal of Molecular Biology, 1979, 134, 575-594.	4.2	36
124	Genetic Control of Complex Bacteriophage Assembly. , 1979, , 581-633.		15
125	Control of the synthesis of phage p22 scaffolding protein is coupled to capsid assembly. Cell, 1978, 15, 551-560.	28.9	57
126	Structure of phage P22 coat protein aggregates formed in the absence of the scaffolding protein. Journal of Molecular Biology, 1978, 126, 721-747.	4.2	115

#	Article	IF	CITATIONS
127	The size of the bacteriophage T4 head in solution with comments about the dimension of virus particles as visualized by electron microscopy. Journal of Molecular Biology, 1978, 122, 247-253.	4.2	30
128	Isolation and characterization of precursors in T4 baseplate assembly the complex of gene 10 and gene 11 products. Journal of Molecular Biology, 1978, 124, 469-486.	4.2	24
129	Antigenic gene products of bacteriophage T4 baseplates. Virology, 1978, 86, 312-328.	2.4	10
130	Molecular reorganization in the hexagon to star transition of the baseplate of bacteriophage T4. Journal of Molecular Biology, 1977, 116, 489-523.	4.2	112
131	Functions of two new genes in Salmonella phage P22 assembly. Virology, 1977, 76, 725-739.	2.4	93
132	Assembly of the tail of bacteriophage T4. Journal of Supramolecular Structure, 1975, 3, 24-38.	2.3	16
133	Harvard XYY study. Science, 1975, 187, 298-299.	12.6	10
134	Genetic control of bacteriophage T4 baseplate morphogenesis. Journal of Molecular Biology, 1975, 99, 645-672.	4.2	123
135	Genetic control of bacteriophage T4 baseplate morphogenesis. Journal of Molecular Biology, 1975, 99, 673-694.	4.2	98
136	Genetic control of bacteriophage T4 baseplate morphogenesis. Journal of Molecular Biology, 1975, 99, 695-716.	4.2	142
137	Intracellular visualization of precursor capsids in phage P22 mutant infected cells. Virology, 1975, 68, 182-199.	2.4	79
138	P22 morphogenesis I: Catalytic scaffolding protein in capsid assembly. Journal of Supramolecular Structure, 1974, 2, 202-224.	2.3	173
139	Catalytic head assembling protein in virus morphogenesis. Nature, 1974, 251, 112-119.	27.8	218
140	Bacteriophage T4 tail assembly: Structural proteins and their genetic identification. Journal of Molecular Biology, 1973, 75, 315-337.	4.2	97
141	Bacteriophage T4 tail assembly: Proteins of the sheath, core and baseplate. Journal of Molecular Biology, 1973, 75, 339-358.	4.2	106
142	Mechanism of head assembly and DNA encapsulation in Salmonella phage P22. Journal of Molecular Biology, 1973, 80, 669-695.	4.2	313
143	Mechanism of head assembly and DNA encapsulation in Salmonella phage P22. Journal of Molecular Biology, 1973, 80, 697-731.	4.2	236
144	Genetic Identification of Amino Acid Sequences Influencing Protein Folding., 1973,, 275-291.		4

#	Article	IF	CITATIONS
145	Polypeptides of the tail fibres of bacteriophage T4. Journal of Molecular Biology, 1971, 62, 465-477.	4.2	970
146	Bacteriophage T4 tail assembly: Four steps in core formation. Journal of Molecular Biology, 1971, 58, 693-709.	4.2	92
147	Assembly of bacteriophage T4 tail fibers: The sequence of gene product interaction. Journal of Molecular Biology, 1969, 39, 583-601.	4.2	78
148	Assembly of the tau of bacteriophage T4. Journal of Molecular Biology, 1968, 32, 231-262.	4.2	283