
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10910632/publications.pdf Version: 2024-02-01

Ιονατήλη Κίνο

#	Article	IF	CITATIONS
1	Polypeptides of the tail fibres of bacteriophage T4. Journal of Molecular Biology, 1971, 62, 465-477.	4.2	970
2	Mechanism of head assembly and DNA encapsulation in Salmonella phage P22. Journal of Molecular Biology, 1973, 80, 669-695.	4.2	313
3	Cyanobacterial photosynthesis in the oceans: the origins and significance of divergent light-harvesting strategies. Trends in Microbiology, 2002, 10, 134-142.	7.7	305
4	Specific aggregation of partially folded polypeptide chains: The molecular basis of inclusion body composition. Nature Biotechnology, 1996, 14, 1283-1287.	17.5	301
5	Assembly of the tau of bacteriophage T4. Journal of Molecular Biology, 1968, 32, 231-262.	4.2	283
6	Structure of epsilon15 bacteriophage reveals genome organization and DNA packaging/injection apparatus. Nature, 2006, 439, 612-616.	27.8	280
7	Protein Folding Intermediates and Inclusion Body Formation Nature Biotechnology, 1989, 7, 690-697.	17.5	273
8	Mechanism of head assembly and DNA encapsulation in Salmonella phage P22. Journal of Molecular Biology, 1973, 80, 697-731.	4.2	236
9	Catalytic head assembling protein in virus morphogenesis. Nature, 1974, 251, 112-119.	27.8	218
10	Backbone structure of the infectious ${\rm l}\mu15$ virus capsid revealed by electron cryomicroscopy. Nature, 2008, 451, 1130-1134.	27.8	204
11	Scaffolding protein regulates the polymerization of P22 coat subunits into icosahedral shells in vitro. Journal of Molecular Biology, 1988, 202, 743-757.	4.2	186
12	P22 morphogenesis I: Catalytic scaffolding protein in capsid assembly. Journal of Supramolecular Structure, 1974, 2, 202-224.	2.3	173
13	Three-dimensional Transformation of Capsids Associated with Genome Packaging in a Bacterial Virus. Journal of Molecular Biology, 1993, 231, 65-74.	4.2	163
14	Genomic and structural analysis of Syn9, a cyanophage infecting marineProchlorococcusandSynechococcus. Environmental Microbiology, 2007, 9, 1675-1695.	3.8	158
15	In vitro unfolding, refolding, and polymerization of human gammaD crystallin, a protein involved in cataract formation. Protein Science, 2003, 12, 480-490.	7.6	156
16	Thermolabile folding intermediates: inclusion body precursors and chaperonin substrates. FASEB Journal, 1996, 10, 57-66.	0.5	151
17	Cryo-EM Asymmetric Reconstruction of Bacteriophage P22 Reveals Organization of its DNA Packaging and Infecting Machinery. Structure, 2006, 14, 1073-1082.	3.3	149
18	Genetic control of bacteriophage T4 baseplate morphogenesis. Journal of Molecular Biology, 1975, 99, 695-716.	4.2	142

#	Article	IF	CITATIONS
19	Genetic control of bacteriophage T4 baseplate morphogenesis. Journal of Molecular Biology, 1975, 99, 645-672.	4.2	123
20	Zernike Phase Contrast Cryo-Electron Microscopy and Tomography for Structure Determination at Nanometer and Subnanometer Resolutions. Structure, 2010, 18, 903-912.	3.3	118
21	Temperature-sensitive mutants blocked in the folding or subunit assembly of the bacteriophage P22 tail spike protein. Journal of Molecular Biology, 1981, 145, 633-651.	4.2	117
22	Structure of phage P22 coat protein aggregates formed in the absence of the scaffolding protein. Journal of Molecular Biology, 1978, 126, 721-747.	4.2	115
23	Molecular reorganization in the hexagon to star transition of the baseplate of bacteriophage T4. Journal of Molecular Biology, 1977, 116, 489-523.	4.2	112
24	Glutamine Deamidation Destabilizes Human γD-Crystallin and Lowers the Kinetic Barrier to Unfolding. Journal of Biological Chemistry, 2006, 281, 30782-30793.	3.4	108
25	Bacteriophage T4 tail assembly: Proteins of the sheath, core and baseplate. Journal of Molecular Biology, 1973, 75, 339-358.	4.2	106
26	Aggregation of granulocyte-colony stimulating factor in vitro involves a conformationally altered monomeric state. Protein Science, 2005, 14, 2246-2257.	7.6	102
27	Genetic control of bacteriophage T4 baseplate morphogenesis. Journal of Molecular Biology, 1975, 99, 673-694.	4.2	98
28	Bacteriophage T4 tail assembly: Structural proteins and their genetic identification. Journal of Molecular Biology, 1973, 75, 315-337.	4.2	97
29	Three-dimensional Structure of Scaffolding-containing Phage P22 Procapsids by Electron Cryo-microscopy. Journal of Molecular Biology, 1996, 260, 85-98.	4.2	97
30	Functions of two new genes in Salmonella phage P22 assembly. Virology, 1977, 76, 725-739.	2.4	93
31	Contributions of hydrophobic domain interface interactions to the folding and stability of human ÂD-crystallin. Protein Science, 2005, 14, 569-581.	7.6	93
32	Bacteriophage T4 tail assembly: Four steps in core formation. Journal of Molecular Biology, 1971, 58, 693-709.	4.2	92
33	Probing folding and fluorescence quenching in human γD crystallin Greek key domains using triple tryptophan mutant proteins. Protein Science, 2004, 13, 2223-2235.	7.6	92
34	Interdomain side-chain interactions in human γD crystallin influencing folding and stability. Protein Science, 2005, 14, 2030-2043.	7.6	92
35	Genome Sequence, Structural Proteins, and Capsid Organization of the Cyanophage Syn5: A "Horned― Bacteriophage of Marine Synechococcus. Journal of Molecular Biology, 2007, 368, 966-981.	4.2	92
36	Role of the Scaffolding Protein in P22 Procapsid Size Determination Suggested by T=4 and T=7 Procapsid Structures. Biophysical Journal, 1998, 74, 559-568.	0.5	90

#	Article	lF	CITATIONS
37	Distinct cysteine sulfhydryl environments detected by analysis of Raman S-H markers of Cys→Ser mutant proteins11Edited by P. E. Wright. Journal of Molecular Biology, 2001, 307, 899-911.	4.2	90
38	Cataract. Nature Reviews Disease Primers, 2015, 1, 15014.	30.5	90
39	Mechanism of the Highly Efficient Quenching of Tryptophan Fluorescence in Human γD-Crystallinâ€. Biochemistry, 2006, 45, 11552-11563.	2.5	86
40	Steps in the stabilization of newly packaged DNA during phage P22 Morphogenesis. Journal of Molecular Biology, 1984, 172, 523-543.	4.2	84
41	Mechanism of the Very Efficient Quenching of Tryptophan Fluorescence in Human γD- and γS-Crystallins: The γ-Crystallin Fold May Have Evolved To Protect Tryptophan Residues from Ultraviolet Photodamage. Biochemistry, 2009, 48, 3708-3716.	2.5	84
42	Purification and organization of the gene 1 portal protein required for phage P22 DNA packaging. Biochemistry, 1988, 27, 1849-1856.	2.5	83
43	Polymerization mechanism of polypeptide chain aggregation. , 1997, 54, 333-343.		83
44	Frequencies of amino acid strings in globular protein sequences indicate suppression of blocks of consecutive hydrophobic residues. Protein Science, 2001, 10, 1023-1031.	7.6	83
45	Temperature-sensitive mutants blocked in the folding or subunit assembly of the bacteriophage P22 tail spike protein. Journal of Molecular Biology, 1981, 145, 653-676.	4.2	81
46	Multimeric intermediates in the pathway to the aggregated inclusion body state for P22 tailspike polypeptide chains. Protein Science, 1995, 4, 900-908.	7.6	81
47	Intracellular visualization of precursor capsids in phage P22 mutant infected cells. Virology, 1975, 68, 182-199.	2.4	79
48	Assembly of bacteriophage T4 tail fibers: The sequence of gene product interaction. Journal of Molecular Biology, 1969, 39, 583-601.	4.2	78
49	Initiation of P22 procapsid assembly in vivo. Journal of Molecular Biology, 1988, 202, 77-86.	4.2	76
50	There's a right way and a wrong way: in vivo and in vitro folding, misfolding and subunit assembly of the P22 tailspike. Structure, 1999, 7, R131-R139.	3.3	76
51	Effects of Oxygen on Recombinant Protein Expression. Biotechnology Progress, 1998, 14, 393-409.	2.6	73
52	A Newly Synthesized, Ribosome-bound Polypeptide Chain Adopts Conformations Dissimilar from Early in VitroRefolding Intermediates. Journal of Biological Chemistry, 2001, 276, 25411-25420.	3.4	71
53	Formation of Amyloid Fibrils In Vitro from Partially Unfolded Intermediates of Human Î ³ C-Crystallin. , 2010, 51, 672.		70
54	Nature and distribution of sites of temperature-sensitive folding mutations in the gene for the P22 Tailspike polypeptide chain. Journal of Molecular Biology, 1988, 204, 607-619.	4.2	68

#	Article	IF	CITATIONS
55	Visualization of the maturation transition in bacteriophage P22 by electron cryomicroscopy. Journal of Molecular Biology, 2000, 297, 615-626.	4.2	68
56	TEMPERATURE-SENSITIVE MUTANTS BLOCKED IN THE FOLDING OR SUBUNIT ASSMBLY OF THE BACTERIOPHAGE P22 TAILSPIKE PROTEIN. I. FINE-STRUCTURE MAPPING. Genetics, 1980, 96, 331-352.	2.9	68
57	Thermal unfolding pathway for the thermostable P22 tailspike endorhamnosidase. Biochemistry, 1991, 30, 6260-6269.	2.5	67
58	Secondary structure and thermostability of the phage P22 tailspike. Journal of Molecular Biology, 1988, 199, 491-502.	4.2	66
59	Inhibition of viral capsid assembly by 1,1'-bis(4-anilinonaphthalene-5-sulfonic acid). Biochemistry, 1993, 32, 10658-10665.	2.5	66
60	Purification of the coat and scaffolding proteins from procapsids of bacteriophage P22. Virology, 1981, 112, 529-547.	2.4	65
61	Assembly in vitro of bacteriophage P22 procapsids from purified coat and scaffolding subunits. Journal of Molecular Biology, 1982, 156, 633-665.	4.2	65
62	Conformation of P22 tailspike folding and aggregation intermediates probed by monoclonal antibodies. Protein Science, 1997, 6, 99-108.	7.6	65
63	Partially Folded Aggregation Intermediates of Human γD-, γC-, and γS-Crystallin Are Recognized and Bound by Human I±B-Crystallin Chaperone. Journal of Molecular Biology, 2010, 401, 134-152.	4.2	61
64	Formation of amyloid fibrils in vitro by human gammaD-crystallin and its isolated domains. Molecular Vision, 2008, 14, 81-9.	1.1	61
65	Scaffolding Mutants Identifying Domains Required for P22 Procapsid Assembly and Maturation. Virology, 1996, 225, 82-96.	2.4	60
66	Control of the synthesis of phage p22 scaffolding protein is coupled to capsid assembly. Cell, 1978, 15, 551-560.	28.9	57
67	Folding of the phage P22 coat protein in vitro. Biochemistry, 1993, 32, 10839-10847.	2.5	57
68	Disulphide-bonded intermediate on the folding and assembly pathway of a non-disulphide bonded protein. Nature Structural Biology, 1997, 4, 450-455.	9.7	57
69	Homotrimeric, Î ² -Stranded Viral Adhesins and Tail Proteins. Journal of Bacteriology, 2003, 185, 4022-4030.	2.2	57
70	The Structure of the Cataract-Causing P23T Mutant of Human γD-Crystallin Exhibits Distinctive Local Conformational and Dynamic Changes,. Biochemistry, 2009, 48, 2597-2609.	2.5	57
71	[13]Mutational analysis of protein folding pathways: The P22 tailspike endorhamnosidase. Methods in Enzymology, 1986, 131, 250-266.	1.0	55
72	Mechanism of the Efficient Tryptophan Fluorescence Quenching in Human γD-Crystallin Studied by Time-Resolved Fluorescence. Biochemistry, 2008, 47, 10705-10721.	2.5	54

#	Article	IF	CITATIONS
73	Binding of Scaffolding Subunits within the P22 Procapsid Lattice. Virology, 1994, 205, 188-197.	2.4	51
74	Hydrophobic Core Mutations Associated with Cataract Development in Mice Destabilize Human γD-Crystallin. Journal of Biological Chemistry, 2009, 284, 33285-33295.	3.4	50
75	Amino acid substitutions influencing intracellular protein folding pathways. FEBS Letters, 1992, 307, 20-25.	2.8	49
76	Tryptophan Cluster Protects Human γDâ€Crystallin from Ultraviolet Radiationâ€Induced Photoaggregation <i>In Vitro</i> . Photochemistry and Photobiology, 2013, 89, 1106-1115.	2.5	49
77	Prevalence of temperature sensitive folding mutations in the parallel beta coil domain of the phage P22 tailspike endorhamnosidase. Journal of Molecular Biology, 1997, 267, 88-102.	4.2	48
78	Femtosecond Fluorescence Spectra of Tryptophan in Human Î ³ -Crystallin Mutants: Site-Dependent Ultrafast Quenching. Journal of the American Chemical Society, 2009, 131, 16751-16757.	13.7	44
79	Structural studies of P22 phage, precursor particles, and proteins by laser Raman spectroscopy. Biochemistry, 1982, 21, 3866-3878.	2.5	42
80	Frequencies of hydrophobic and hydrophilic runs and alternations in proteins of known structure. Protein Science, 2006, 15, 102-112.	7.6	42
81	Contributions of aromatic pairs to the folding and stability of longâ€lived human γDâ€crystallin. Protein Science, 2011, 20, 513-528.	7.6	41
82	Conformational stability of P22 tailspike proteins carrying temperature-sensitive folding mutations. Biochemistry, 1990, 29, 4181-4187.	2.5	39
83	Mutational Effects on Inclusion Body Formation. Advances in Protein Chemistry, 1997, 50, 243-264.	4.4	39
84	Predicting the Beta-Helix Fold from Protein Sequence Data. Journal of Computational Biology, 2002, 9, 261-276.	1.6	37
85	Structural studies of bacteriophage lambda heads and proheads by small angle X-ray diffraction. Journal of Molecular Biology, 1979, 134, 575-594.	4.2	36
86	Genetic Analysis of Protein Folding Pathways. Nature Biotechnology, 1986, 4, 297-303.	17.5	36
87	Cold rescue of the thermolabile tailspike intermediate at the junction between productive folding and offâ€pathway aggregation. Protein Science, 1998, 7, 1516-1523.	7.6	36
88	Conformational states of the bacteriophage P22 capsid subunit in relation to self-assembly. Biochemistry, 1990, 29, 5626-5633.	2.5	34
89	Solution X-Ray Scattering-Based Estimation of Electron Cryomicroscopy Imaging Parameters for Reconstruction of Virus Particles. Biophysical Journal, 1999, 76, 2249-2261.	0.5	34
90	Identification of Sites Influencing the Folding and Subunit Assembly of the P22 Tailspike Polypeptide Chain Using Nonsense Mutations. Genetics, 1987, 117, 157-171.	2.9	33

#	Article	IF	CITATIONS
91	Phycobiliprotein genes of the marine photosynthetic prokaryote Prochlorococcus: evidence for rapid evolution of genetic heterogeneity. Microbiology (United Kingdom), 2001, 147, 3171-3182.	1.8	33
92	Folding and assembly of oligomeric proteins in Escherichia coli. Current Opinion in Biotechnology, 1992, 3, 468-473.	6.6	32
93	In vitro folding of phage P22 coat protein with amino acid substitutions that confer in vivo temperature sensitivity. Biochemistry, 1995, 34, 6815-6826.	2.5	32
94	The interdigitated beta-helix domain of the P22 tailspike protein acts as a molecular clamp in trimer stabilization. Protein Science, 2002, 11, 820-830.	7.6	32
95	The size of the bacteriophage T4 head in solution with comments about the dimension of virus particles as visualized by electron microscopy. Journal of Molecular Biology, 1978, 122, 247-253.	4.2	30
96	DNA injection proteins are targets of acridine-sensitized photoinactivation of bacteriophage P22. Journal of Molecular Biology, 1984, 180, 837-863.	4.2	30
97	Ubiquitin Proteasome Pathway–Mediated Degradation of Proteins: Effects Due to Site-Specific Substrate Deamidation. , 2010, 51, 4164.		30
98	An elongated spine of buried core residues necessary for in vivo folding of the parallel beta-helix of P22 tailspike adhesin. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3575-3580.	7.1	29
99	Novel second-site suppression of a cold-sensitive defect in phage P22 procapsid assembly. Journal of Molecular Biology, 1990, 216, 701-716.	4.2	28
100	Role for cysteine residues in the in vivo folding and assembly of the phage P22 tailspike. Protein Science, 2001, 10, 397-410.	7.6	28
101	Stability of Wild-type and Temperature-sensitive Protein Subunits of the Phage P22 Capsid. Journal of Biological Chemistry, 1995, 270, 16595-16601.	3.4	27
102	Tyrosine/Cysteine Cluster Sensitizing Human γD-Crystallin to Ultraviolet Radiation-Induced Photoaggregation in Vitro. Biochemistry, 2014, 53, 979-990.	2.5	25
103	Isolation and characterization of precursors in T4 baseplate assembly the complex of gene 10 and gene 11 products. Journal of Molecular Biology, 1978, 124, 469-486.	4.2	24
104	βâ€Helix core packing within the tripleâ€stranded oligomerization domain of the P22 tailspike. Protein Science, 2000, 9, 2338-2343.	7.6	24
105	Fold recognition and accurate sequence-structure alignment of sequences directing β-sheet proteins. Proteins: Structure, Function and Bioinformatics, 2006, 63, 976-985.	2.6	24
106	Regulation of Structural Protein Interactions as Revealed in Phage Morphogenesis. , 1980, , 101-132.		23
107	The DNA Injection Apparatus of Phage P22. Biophysical Journal, 1986, 49, 24-26.	0.5	22
108	Characterization of the Protrimer Intermediate in the Folding Pathway of the Interdigitated β-Helix Tailspike Proteinâ€. Biochemistry, 2002, 41, 5093-5103.	2.5	22

#	Article	IF	CITATIONS
109	[22] Detection of early aggregation intermediates by native gel electrophoresis and native Western blotting. Methods in Enzymology, 1999, 309, 333-350.	1.0	21
110	Scaffolding Proteins and the Genetic Control of Virus Shell Assembly. Quarterly Review of Biology, 1980, 55, 369-393.	0.1	20
111	Mechanisms of Inclusion Body Formation. ACS Symposium Series, 1991, , 35-49.	0.5	19
112	Monitoring the refolding pathway for a large multimeric protein using capillary zone electrophoresis. Journal of Chromatography A, 1997, 769, 315-323.	3.7	19
113	In Vitro Unfolding/Refolding of Wild Type Phage P22 Scaffolding Protein Reveals Capsid-binding Domain. Journal of Biological Chemistry, 1999, 274, 16135-16140.	3.4	19
114	Protein Folding Failure Sets High-Temperature Limit on Growth of Phage P22 in Salmonella enterica Serovar Typhimurium. Applied and Environmental Microbiology, 2004, 70, 4840-4847.	3.1	17
115	Assembly of the tail of bacteriophage T4. Journal of Supramolecular Structure, 1975, 3, 24-38.	2.3	16
116	Buried hydrophobic side-chains essential for the folding of the parallel β-helix domains of the P22 tailspike. Protein Science, 2004, 13, 2291-2303.	7.6	16
117	Genetic Control of Complex Bacteriophage Assembly. , 1979, , 581-633.		15
118	Identification of the 9-aminoacridine/DNA complex responsible for photodynamic inactivation of P22. Biochemistry, 1986, 25, 5858-5864.	2.5	13
119	Harvard XYY study. Science, 1975, 187, 298-299.	12.6	10
120	Antigenic gene products of bacteriophage T4 baseplates. Virology, 1978, 86, 312-328.	2.4	10
121	Monoclonal Antibody Epitope Mapping Describes Tailspike Î ² -Helix Folding and Aggregation Intermediates. Journal of Biological Chemistry, 2005, 280, 23032-23040.	3.4	10
122	Hydro-epidemiological modelling of bacterial transport and decay in nearshore coastal waters. Water Research, 2021, 196, 117049.	11.3	10
123	Genetic and biochemical analysis ofin vivo protein folding and subunit assembly. Biopolymers, 1983, 22, 125-129.	2.4	9
124	Folding and Stability of Mutant Scaffolding Proteins Defective in P22 Capsid Assembly. Journal of Biological Chemistry, 1999, 274, 16141-16146.	3.4	8
125	Wrap-and-Pack: A New Paradigm for Beta Structural Motif Recognition with Application to Recognizing Beta Trefoils. Journal of Computational Biology, 2005, 12, 777-795.	1.6	8
126	A late gene product of phage P22 affecting virus infectivity. Virology, 1985, 143, 368-379.	2.4	7

#	Article	IF	CITATIONS
127	Investigation of secondary structures and macromolecular interactions in bacteriophage p22 by laser raman spectroscopy. Biophysical Journal, 1980, 32, 234-237.	0.5	6
128	A green light for protein folding. Nature Biotechnology, 1999, 17, 637-638.	17.5	6
129	Stalled Folding Mutants in the Triple β-Helix Domain of the Phage P22 Tailspike Adhesin. Journal of Molecular Biology, 2005, 354, 1103-1117.	4.2	6
130	Aggregate formation from thermolabile intermediates in the maturation of the thermostable P22 tailspike. Biochemical Society Transactions, 1988, 16, 105-108.	3.4	4
131	Genetic Analysis of Polypeptide Chain Folding and Misfolding in Vivo. , 1990, , 59-78.		4
132	Genetic Identification of Amino Acid Sequences Influencing Protein Folding. , 1973, , 275-291.		4
133	Pathway for the Thermal Unfolding of Wild Type and Mutant Forms of the Thermostable P22 Tailspike Endorhamnosidase. ACS Symposium Series, 1991, , 119-132.	0.5	3
134	Refolding with a piece of the ring. Nature Biotechnology, 1997, 15, 514-515.	17.5	3
135	The C-terminal cysteine annulus participates in auto-chaperone function forSalmonellaphage P22 tailspike folding and assembly. Bacteriophage, 2012, 2, 36-49.	1.9	3
136	Amino Acid Sequence Determinants of Polypeptide Chain Folding and Inclusion Body Formation. ACS Symposium Series, 1993, , 24-37.	0.5	2
137	Unexpected pathways to protein stabilization. Nature Biotechnology, 1996, 14, 436-436.	17.5	2
138	Wrap-and-pack. , 2004, , .		2
139	Lattice Transformations and Subunit Conformational Changes in Phage Capsid Maturation. Journal of Theoretical Medicine, 2005, 6, 99-105.	0.5	1
140	Congressional Budget Responses to the Pandemic: Fund Health Care, Not Warfare. American Journal of Public Health, 2021, 111, 200-201.	2.7	1
141	Polymerization mechanism of polypeptide chain aggregation. Biotechnology and Bioengineering, 1997, 54, 333-343.	3.3	1
142	Mutations Affecting Protein Folding and Misfolding in Vivo. , 1991, , 129-136.		1
143	Introduction: From Genes to Organelles. Quarterly Review of Biology, 1980, 55, 329-333.	0.1	0
144	The Legal and Legislative Background. Environment, 1982, 24, 24-36.	1.4	0

#	Article	IF	CITATIONS
145	Amino Acid Sequence Control of the Folding of the Parallel β-Helix, the Simplest β-Sheet Fold. Lecture Notes in Computer Science, 2005, , 472-473.	1.3	0
146	Human Î ³ crystallins form fibrillar amyloid aggregates through a partially unfolded intermediate. FASEB Journal, 2008, 22, 1010.3.	0.5	0
147	Mutations associated with early cataract development in mice destabilize human gammaDâ€crystallin. FASEB Journal, 2008, 22, 232-232.	0.5	0
148	The Use of Salmonella Bacteriophage P22 to Study the Multiple Mechanisms of Acridine-Induced Damage. , 1983, , 79-109.		0