Martin J D Clift

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10903435/publications.pdf

Version: 2024-02-01

126907 118850 4,444 63 33 citations h-index papers

62 g-index 67 67 67 7486 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Current characterization methods for cellulose nanomaterials. Chemical Society Reviews, 2018, 47, 2609-2679.	38.1	690
2	The impact of different nanoparticle surface chemistry and size on uptake and toxicity in a murine macrophage cell line. Toxicology and Applied Pharmacology, 2008, 232, 418-427.	2.8	311
3	Air Pollution, Ultrafine and Nanoparticle Toxicology: Cellular and Molecular Interactions. IEEE Transactions on Nanobioscience, 2007, 6, 331-340.	3.3	299
4	Nanomaterials Versus Ambient Ultrafine Particles: An Opportunity to Exchange Toxicology Knowledge. Environmental Health Perspectives, 2017, 125, 106002.	6.0	274
5	Bioavailability of silver nanoparticles and ions: from a chemical and biochemical perspective. Journal of the Royal Society Interface, 2013, 10, 20130396.	3.4	273
6	Investigating the Interaction of Cellulose Nanofibers Derived from Cotton with a Sophisticated 3D Human Lung Cell Coculture. Biomacromolecules, 2011, 12, 3666-3673.	5.4	183
7	Minimal analytical characterization of engineered nanomaterials needed for hazard assessment in biological matrices. Nanotoxicology, $2011, 5, 1-11$.	3.0	141
8	In vitro interaction of colloidal nanoparticles with mammalian cells: What have we learned thus far?. Beilstein Journal of Nanotechnology, 2014, 5, 1477-1490.	2.8	130
9	Surface charge of polymer coated SPIONs influences the serum protein adsorption, colloidal stability and subsequent cell interaction in vitro. Nanoscale, 2013, 5, 3723.	5.6	127
10	Exposure of silver-nanoparticles and silver-ions to lung cells in vitro at the air-liquid interface. Particle and Fibre Toxicology, 2013, 10, 11.	6.2	118
11	Nanotoxicology: a perspective and discussion of whether or not in vitro testing is a valid alternative. Archives of Toxicology, 2011, 85, 723-731.	4.2	116
12	An in vitro testing strategy towards mimicking the inhalation of high aspect ratio nanoparticles. Particle and Fibre Toxicology, 2014, 11, 40.	6.2	91
13	Gold Nanorods: Controlling Their Surface Chemistry and Complete Detoxification by a Twoâ€Step Place Exchange. Angewandte Chemie - International Edition, 2013, 52, 1934-1938.	13.8	87
14	The effects of serum on the toxicity of manufactured nanoparticles. Toxicology Letters, 2010, 198, 358-365.	0.8	83
15	Uptake efficiency of surface modified gold nanoparticles does not correlate with functional changes and cytokine secretion in human dendritic cells in vitro. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 633-644.	3.3	78
16	Pulmonary surfactant coating of multi-walled carbon nanotubes (MWCNTs) influences their oxidative and pro-inflammatory potential in vitro. Particle and Fibre Toxicology, 2012, 9, 17.	6.2	76
17	Critical review of the current and future challenges associated with advanced <i>in vitro </i> systems towards the study of nanoparticle (secondary) genotoxicity. Mutagenesis, 2017, 32, 233-241.	2.6	75
18	Intracellular imaging of nanoparticles: Is it an elemental mistake to believe what you see?. Particle and Fibre Toxicology, 2010, 7, 15.	6.2	71

#	Article	IF	CITATIONS
19	The uptake and intracellular fate of a series of different surface coated quantum dots in vitro. Toxicology, 2011, 286, 58-68.	4.2	67
20	An investigation into the potential for different surface-coated quantum dots to cause oxidative stress and affect macrophage cell signalling <i>in vitro</i>). Nanotoxicology, 2010, 4, 139-149.	3.0	66
21	A Comparative Study of Different In Vitro Lung Cell Culture Systems to Assess the Most Beneficial Tool for Screening the Potential Adverse Effects of Carbon Nanotubes. Toxicological Sciences, 2014, 137, 55-64.	3.1	65
22	Fate of Cellulose Nanocrystal Aerosols Deposited on the Lung Cell Surface In Vitro. Biomacromolecules, 2015, 16, 1267-1275.	5.4	65
23	Quantum dot cytotoxicity (i>in vitro (i>: An investigation into the cytotoxic effects of a series of different surface chemistries and their core/shell materials. Nanotoxicology, 2011, 5, 664-674.	3.0	61
24	Quantification of nanoparticles at the single-cell level: an overview about state-of-the-art techniques and their limitations. Nanomedicine, 2014, 9, 1885-1900.	3.3	60
25	Mimicking exposures to acute and lifetime concentrations of inhaled silver nanoparticles by two different in vitro approaches. Beilstein Journal of Nanotechnology, 2014, 5, 1357-1370.	2.8	55
26	Quantum Dots: An Insight and Perspective of Their Biological Interaction and How This Relates to Their Relevance for Clinical Use. Theranostics, 2012, 2, 668-680.	10.0	53
27	Repeated exposure to carbon nanotube-based aerosols does not affect the functional properties of a 3D human epithelial airway model. Nanotoxicology, 2015, 9, 983-993.	3.0	46
28	Effects of flame made zinc oxide particles in human lung cells - a comparison of aerosol and suspension exposures. Particle and Fibre Toxicology, 2012, 9, 33.	6.2	45
29	Cerium dioxide nanoparticles can interfere with the associated cellular mechanistic response to diesel exhaust exposure. Toxicology Letters, 2012, 214, 218-225.	0.8	43
30	Can the Ames test provide an insight into nano-object mutagenicity? Investigating the interaction between nano-objects and bacteria. Nanotoxicology, 2013, 7, 1373-1385.	3.0	40
31	In vitro detection of in vitro secondary mechanisms of genotoxicity induced by engineered nanomaterials. Particle and Fibre Toxicology, 2019, 16, 8.	6.2	40
32	A Brief Summary of Carbon Nanotubes Science and Technology: A Health and Safety Perspective. ChemSusChem, 2011, 4, 905-911.	6.8	37
33	Aligning nanotoxicology with the 3Rs: What is needed to realise the short, medium and long-term opportunities?. Regulatory Toxicology and Pharmacology, 2017, 91, 257-266.	2.7	36
34	Combined exposure of diesel exhaust particles and respirable Soufrià re Hills volcanic ash causes a (pro-)inflammatory response in an in vitro multicellular epithelial tissue barrier model. Particle and Fibre Toxicology, 2016, 13, 67.	6.2	34
35	Nanomaterials and Innate Immunity: A Perspective of the Current Status in Nanosafety. Chemical Research in Toxicology, 2020, 33, 1061-1073.	3.3	34
36	Adaptation of the <i>in vitro</i> micronucleus assay for genotoxicity testing using 3D liver models supporting longer-term exposure durations. Mutagenesis, 2020, 35, 319-330.	2.6	29

#	Article	IF	Citations
37	Nonâ€Animal Strategies for Toxicity Assessment of Nanoscale Materials: Role of Adverse Outcome Pathways in the Selection of Endpoints. Small, 2021, 17, e2007628.	10.0	27
38	Biological response of an in vitro human 3D lung cell model exposed to brake wear debris varies based on brake pad formulation. Archives of Toxicology, 2018, 92, 2339-2351.	4.2	26
39	Inter-laboratory variability of A549 epithelial cells grown under submerged and air-liquid interface conditions. Toxicology in Vitro, 2021, 75, 105178.	2.4	26
40	Polyvinyl Alcohol as a Biocompatible Alternative for the Passivation of Gold Nanorods. Angewandte Chemie - International Edition, 2014, 53, 12613-12617.	13.8	24
41	Respiratory hazard assessment of combined exposure to complete gasoline exhaust and respirable volcanic ash in a multicellular human lung model at the air-liquid interface. Environmental Pollution, 2018, 238, 977-987.	7.5	21
42	In Vitro Primaryâ€Indirect Genotoxicity in Bronchial Epithelial Cells Promoted by Industrially Relevant Fewâ€Layer Graphene. Small, 2021, 17, e2002551.	10.0	21
43	Few-layer graphene induces both primary and secondary genotoxicity in epithelial barrier models in vitro. Journal of Nanobiotechnology, 2021, 19, 24.	9.1	21
44	Modeling Nanoparticle–Alveolar Epithelial Cell Interactions under Breathing Conditions Using Captive Bubble Surfactometry. Langmuir, 2014, 30, 4924-4932.	3.5	19
45	A novel technique to determine the cell type specific response within an in vitro co-culture model via multi-colour flow cytometry. Scientific Reports, 2017, 7, 434.	3.3	17
46	An Alternative Perspective towards Reducing the Risk of Engineered Nanomaterials to Human Health. Small, 2020, 16, e2002002.	10.0	17
47	Understanding the impact of more realistic low-dose, prolonged engineered nanomaterial exposure on genotoxicity using 3D models of the human liver. Journal of Nanobiotechnology, 2021, 19, 193.	9.1	15
48	Advanced 3D Liver Models for In vitro Genotoxicity Testing Following Long-Term Nanomaterial Exposure. Journal of Visualized Experiments, 2020, , .	0.3	14
49	Assessment of the potential for in-plume sulphur dioxide gas-ash interactions to influence the respiratory toxicity of volcanic ash. Environmental Research, 2019, 179, 108798.	7.5	12
50	Characteristics and properties of nano-LiCoO2 synthesized by pre-organized single source precursors: Li-ion diffusivity, electrochemistry and biological assessment. Journal of Nanobiotechnology, 2017, 15, 58.	9.1	11
51	Opportunities and Challenges for Integrating New In Vitro Methodologies in Hazard Testing and Risk Assessment. Small, 2021, 17, e2006298.	10.0	11
52	The Road to Achieving the European Commission's Chemicals Strategy for Nanomaterial Sustainability—A PATROLS Perspective on New Approach Methodologies. Small, 2022, 18, e2200231.	10.0	9
53	A biological perspective toward the interaction of theranostic nanoparticles with the bloodstream $\tilde{A}^{\hat{a}}$, $\hat{A}^{\hat{a}}$ what needs to be considered?. Frontiers in Chemistry, 2015, 3, 7.	3.6	8
54	Towards More Predictive, Physiological and Animal-free <i>In Vitro</i> Models: Advances in Cell and Tissue Culture 2020 Conference Proceedings. ATLA Alternatives To Laboratory Animals, 2021, 49, 93-110.	1.0	6

#	Article	IF	CITATIONS
55	Studying the Oxidative Stress Paradigm In Vitro: A Theoretical and Practical Perspective. Methods in Molecular Biology, 2013, 1028, 115-133.	0.9	6
56	The influence of exposure approaches to <i>inÂvitro</i> lung epithelial barrier models to assess engineered nanomaterial hazard. Nanotoxicology, 2022, 16, 114-134.	3.0	6
57	The Role of the Protein Corona in Fiber Structure-Activity Relationships. Fibers, 2014, 2, 187-210.	4.0	4
58	Deducing the cellular mechanisms associated with the potential genotoxic impact of gold and silver engineered nanoparticles upon different lung epithelial cell lines inÂvitro. Nanotoxicology, 2022, , 1-21.	3.0	3
59	Nanofibers: Friend or Foe?. Fibers, 2016, 4, 25.	4.0	2
60	Cellular Defense Mechanisms Following Nanomaterial Exposure: A Focus on Oxidative Stress and Cytotoxicity. Nanoscience and Technology, 2019, , 243-254.	1.5	2
61	Laser scanning microscopy combined with image restoration to analyse a 3D model of the human epithelial airway barrier. Swiss Medical Weekly, 2010, 140, w13060.	1.6	2
62	State of the art toxicological and microscopic assessment of biomedical nanocrystals on the lung in vitro. , $2011, \ldots$		0
63	Overview of Nanotoxicology in Humans and the Environment; Developments, Challenges and Impacts. Molecular and Integrative Toxicology, 2021, , 1-40.	0.5	O