List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10903391/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The challenges of using NAD ⁺ -dependent formate dehydrogenases for CO ₂ conversion. Critical Reviews in Biotechnology, 2022, 42, 953-972.	9.0	21
2	High-temperature behavior of hyperthermostable Thermotoga maritima xylanase XYN10B after designed and evolved mutations. Applied Microbiology and Biotechnology, 2022, 106, 2017-2027.	3.6	5
3	Activity and stability of hyperthermostable cellulases and xylanases in ionic liquids. Biocatalysis and Biotransformation, 2021, 39, 242-259.	2.0	17
4	Inhibition of hyperthermostable xylanases by superbase ionic liquids. Process Biochemistry, 2020, 95, 148-156.	3.7	10
5	Engineered formate dehydrogenase from Chaetomium thermophilum, a promising enzymatic solution for biotechnical CO2 fixation. Biotechnology Letters, 2020, 42, 2251-2262.	2.2	29
6	Effect of Metal Ions on the Activity of Ten NAD-Dependent Formate Dehydrogenases. Protein Journal, 2020, 39, 519-530.	1.6	7
7	Characterization of a versatile glycoside hydrolase Cel5M from <i>Pectobacterium carotovorum</i> HG-49 for ramie degumming. Textile Reseach Journal, 2020, 90, 1602-1615.	2.2	9
8	Amino acid-functionalized carbon nanotube framework as a biomimetic catalyst for cleavage of glycosidic bonds. Bioinspiration and Biomimetics, 2019, 14, 036007.	2.9	2
9	Screening of glycoside hydrolases and ionic liquids for fibre modification. Journal of Chemical Technology and Biotechnology, 2018, 93, 818-826.	3.2	3
10	Functional effects of active site mutations in NAD+-dependent formate dehydrogenases on transformation of hydrogen carbonate to formate. Protein Engineering, Design and Selection, 2018, 31, 327-335.	2.1	24
11	OUP accepted manuscript. Protein Engineering, Design and Selection, 2017, 30, 47-55.	2.1	19
12	Characterization of a recombinant alkaline thermostable Î ² -mannanase and its application in eco-friendly ramie degumming. Process Biochemistry, 2017, 61, 73-79.	3.7	18
13	High stability and low competitive inhibition of thermophilic Thermopolyspora flexuosa GH10 xylanase in biomass-dissolving ionic liquids. Applied Microbiology and Biotechnology, 2017, 101, 1487-1498.	3.6	15
14	Biochemical Characterization of Extracellular Cellulase from Tuber maculatum Mycelium Produced Under Submerged Fermentation. Applied Biochemistry and Biotechnology, 2017, 181, 772-783.	2.9	15
15	Characterization of natural habitats and diversity of Libyan desert truffles. 3 Biotech, 2017, 7, 328.	2.2	6
16	Hyperthermostable Thermotoga maritima xylanase XYN10B shows high activity at high temperatures in the presence of biomass-dissolving hydrophilic ionic liquids. Extremophiles, 2016, 20, 515-524.	2.3	25
17	Effect of enzymatic high temperature prehydrolysis on the subsequent cellulose hydrolysis of steamâ€pretreated spruce in high solids concentration. Journal of Chemical Technology and Biotechnology, 2016, 91, 1844-1852.	3.2	13
18	Comparison of pulp species in IONCELL-P: selective hemicellulose extraction method with ionic liquids. Holzforschung, 2016, 70, 291-296.	1.9	21

#	Article	IF	CITATIONS
19	New Insights into the Role of T3 Loop in Determining Catalytic Efficiency of GH28 Endo-Polygalacturonases. PLoS ONE, 2015, 10, e0135413.	2.5	21
20	Stability and activity of Dictyoglomus thermophilum GH11 xylanase and its disulphide mutant at high pressure and temperature. Enzyme and Microbial Technology, 2015, 70, 66-71.	3.2	17
21	Enhancement of acetyl xylan esterase activity on cellulose acetate through fusion to a family 3 cellulose binding module. Enzyme and Microbial Technology, 2015, 79-80, 27-33.	3.2	15
22	Effect of active site mutation on pH activity and transglycosylation of Sulfolobus acidocaldarius β-glycosidase. Journal of Molecular Catalysis B: Enzymatic, 2015, 118, 62-69.	1.8	3
23	Characterization of a new acidic NAD + -dependent formate dehydrogenase from thermophilic fungus Chaetomium thermophilum. Journal of Molecular Catalysis B: Enzymatic, 2015, 122, 212-217.	1.8	10
24	Effect of acidic amino acids engineered into the active site cleft of <i>Thermopolyspora flexuosa</i> GH11 xylanase. Biotechnology and Applied Biochemistry, 2015, 62, 433-440.	3.1	10
25	Thermal behaviour and tolerance to ionic liquid [emim]OAc in GH10 xylanase from Thermoascus aurantiacus SL16W. Extremophiles, 2014, 18, 1023-1034.	2.3	23
26	Elucidation of the Molecular Basis for Arabinoxylan-Debranching Activity of a Thermostable Family GH62 α- <scp>l</scp> -Arabinofuranosidase from Streptomyces thermoviolaceus. Applied and Environmental Microbiology, 2014, 80, 5317-5329.	3.1	44
27	The cultivation of oak seedlings inoculated with Tuber aestivum Vittad. in the boreal region of Finland. Mycological Progress, 2014, 13, 373-380.	1.4	10
28	Thermostability Improvement of a Streptomyces Xylanase by Introducing Proline and Glutamic Acid Residues. Applied and Environmental Microbiology, 2014, 80, 2158-2165.	3.1	94
29	The crystal structure of acidic β-galactosidase from Aspergillus oryzae. International Journal of Biological Macromolecules, 2013, 60, 109-115.	7.5	69
30	Thermostabilization of extremophilic Dictyoglomus thermophilum GH11 xylanase by an N-terminal disulfide bridge and the effect of ionic liquid [emim]OAc on the enzymatic performance. Enzyme and Microbial Technology, 2013, 53, 414-419.	3.2	48
31	Improved thermal performance of Thermomyces lanuginosus GH11 xylanase by engineering of an N-terminal disulfide bridge. Bioresource Technology, 2012, 112, 275-279.	9.6	96
32	Crystal structures of Trichoderma reesei Î ² -galactosidase reveal conformational changes in the active site. Journal of Structural Biology, 2011, 174, 156-163.	2.8	47
33	<i>Tuber foetidum</i> found in Finland. Mycotaxon, 2011, 114, 127-133.	0.3	4
34	Effect of Glycosylation and Additional Domains on the Thermostability of a Family 10 Xylanase Produced by <i>Thermopolyspora flexuosa</i> . Applied and Environmental Microbiology, 2010, 76, 356-360.	3.1	41
35	<i>In silico</i> evidence for functional specialization after genome duplication in yeast. FEMS Yeast Research, 2009, 9, 16-31.	2.3	27
36	Irreversible thermal denaturation of Trichoderma reesei endo-1,4-β-xylanase II and its three disulfide mutants characterized by differential scanning calorimetry. International Journal of Biological Macromolecules, 2008, 42, 75-80.	7.5	10

#	Article	IF	CITATIONS
37	Protein engineering: opportunities and challenges. Applied Microbiology and Biotechnology, 2007, 75, 1225-1232.	3.6	56
38	Protein Engineering of Industrial Enzymes. , 2006, , 579-601.		0
39	Stochastic boundary molecular dynamics simulation of l-ribose in the active site of Actinoplanes missouriensis xylose isomerase and its Val135Asn mutant with improved reaction rate. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2005, 1749, 65-73.	2.3	15
40	Xylanase production by Trichoderma reesei Rut C-30 grown on L-arabinose-rich plant hydrolysates. Bioresource Technology, 2005, 96, 753-759.	9.6	47
41	Engineering the substrate specificity of xylose isomerase. Protein Engineering, Design and Selection, 2005, 17, 861-869.	2.1	35
42	Engineering the thermostability of Trichoderma reesei endo-1,4-?-xylanase II by combination of disulphide bridges. Extremophiles, 2004, 8, 393-400.	2.3	57
43	Influence of pH on the production of xylanases by Trichoderma reesei Rut C-30. Process Biochemistry, 2004, 39, 731-736.	3.7	61
44	Characterization of the xylanase produced by submerged cultivation of Thermomyces lanuginosus DSM 10635. Enzyme and Microbial Technology, 2004, 35, 93-99.	3.2	38
45	Characterization of Mutant Xylanases Using Fourier Transform Ion Cyclotron Resonance Mass Spectrometry:  Stabilizing Contributions of Disulfide Bridges and N-Terminal Extensions. Biochemistry, 2004, 43, 9556-9566.	2.5	24
46	Engineering the Thermotolerance and pH Optimum of Family 11 Xylanases by Site-Directed Mutagenesis. Methods in Enzymology, 2004, 388, 156-167.	1.0	12
47	A de novo designed N-terminal disulphide bridge stabilizes the Trichoderma reesei endo-1,4-β-xylanase II. Journal of Biotechnology, 2004, 108, 137-143.	3.8	84
48	Three-dimensional structures of thermophilic beta-1,4-xylanases from Chaetomium thermophilum and Nonomuraea flexuosa. Comparison of twelve xylanases in relation to their thermal stability. FEBS Journal, 2003, 270, 1399-1412.	0.2	188
49	Engineering of multiple arginines into the Ser/Thr surface of Trichoderma reesei endo-1,4-β-xylanase II increases the thermotolerance and shifts the pH optimum towards alkaline pH. Protein Engineering, Design and Selection, 2002, 15, 141-145.	2.1	131
50	A combination of weakly stabilizing mutations with a disulfide bridge in the α-helix region of Trichoderma reesei endo-1,4-β-xylanase II increases the thermal stability through synergism. Journal of Biotechnology, 2001, 88, 37-46.	3.8	109
51	Thermostability of endo-1,4-Î ² -xylanase II from Trichoderma reesei studied by electrospray ionization Fourier-transform ion cyclotron resonance MS, hydrogen/deuterium-exchange reactions and dynamic light scattering. Biochemical Journal, 2001, 356, 453-460.	3.7	29
52	Mucin MUC1 Is Seen in Cell Surface Protrusions Together with Ezrin in Immunoelectron Tomography and is Concentrated at Tips of Filopodial Protrusions in MCF-7 Breast Carcinoma Cells. Journal of Histochemistry and Cytochemistry, 2001, 49, 67-77.	2.5	20
53	Thermostability of endo-1,4-Î ² -xylanase II from Trichoderma reesei studied by electrospray ionization Fourier-transform ion cyclotron resonance MS, hydrogen/deuterium-exchange reactions and dynamic light scattering. Biochemical Journal, 2001, 356, 453.	3.7	20
54	Structure-function relationships in the ezrin family and the effect of tumor-associated point mutations in neurofibromatosis 2 protein. BBA - Proteins and Proteomics, 1998, 1387, 1-16.	2.1	48

#	Article	IF	CITATIONS
55	Genomic structure of the human ezrin gene. Human Genetics, 1998, 103, 662-665.	3.8	12
56	The ezrin protein family: membrane-cytoskeleton interactions and disease associations. Current Opinion in Cell Biology, 1997, 9, 659-666.	5.4	191
57	ICAM-2 redistributed by ezrin as a target for killer cells. Nature, 1996, 382, 265-268.	27.8	220
58	Enhanced activity of hyperthermostable Pyrococcus horikoshii endoglucanase in superbase ionic liquids. Biotechnology Letters, 0, , .	2.2	2