Marion Pepper

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1090275/publications.pdf

Version: 2024-02-01

172457 182427 6,689 53 29 51 citations h-index g-index papers 61 61 61 12174 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Imprinted SARS-CoV-2-specific memory lymphocytes define hybrid immunity. Cell, 2022, 185, 1588-1601.e14.	28.9	137
2	Immunity to <scp>SARS oV</scp> â€⊋ infection*. Immunological Reviews, 2022, 309, 5-7.	6.0	3
3	Functional SARS-CoV-2-Specific Immune Memory Persists after Mild COVID-19. Cell, 2021, 184, 169-183.e17.	28.9	580
4	Multimeric antibodies from antigen-specific human IgM+ memory B cells restrict <i>Plasmodium</i> parasites. Journal of Experimental Medicine, 2021, 218, .	8.5	23
5	Local memory CD4 T cell niches in respiratory viral infection. Journal of Experimental Medicine, 2021, 218, .	8.5	18
6	SARS-CoV-2 Serologic Assays in Control and Unknown Populations Demonstrate the Necessity of Virus Neutralization Testing. Journal of Infectious Diseases, 2021, 223, 1120-1131.	4.0	27
7	A Conversation with Dr. Marion Pepper. Journal of Interferon and Cytokine Research, 2021, 41, 360-362.	1.2	О
8	B cells are sufficient to prime the dominant CD4+ Tfh response to $\langle i \rangle$ Plasmodium $\langle i \rangle$ infection. Journal of Experimental Medicine, 2020, 217, .	8.5	33
9	Elicitation of Potent Neutralizing Antibody Responses by Designed Protein Nanoparticle Vaccines for SARS-CoV-2. Cell, 2020, 183, 1367-1382.e17.	28.9	420
10	B cell intrinsic expression of IFNλ receptor suppresses the acute humoral immune response to experimental blood-stage malaria. Virulence, 2020, 11, 594-606.	4.4	7
11	Metabolic constraints on the B cell response to malaria. Nature Immunology, 2020, 21, 722-724.	14.5	1
12	Hey man. Nature Immunology, 2020, 21, 236-236.	14.5	3
13	Reinvigorating NIH Grant Peer Review. Immunity, 2020, 52, 1-3.	14.3	20
14	In Vivo CD4 ⁺ T Cell Differentiation and Function: Revisiting the Th1/Th2 Paradigm. Annual Review of Immunology, 2020, 38, 705-725.	21.8	259
15	A Thpok-Directed Transcriptional Circuitry Promotes Bcl6 and Maf Expression to Orchestrate T Follicular Helper Differentiation. Immunity, 2019, 51, 465-478.e6.	14.3	30
16	FCRL5+ Memory B Cells Exhibit Robust Recall Responses. Cell Reports, 2019, 27, 1446-1460.e4.	6.4	87
17	Targeting Antigens to CD180 but Not CD40 Programs Immature and Mature B Cell Subsets to Become Efficient APCs. Journal of Immunology, 2019, 203, 1715-1729.	0.8	15
18	Universal Principled Review: A Community-Driven Method to Improve Peer Review. Cell, 2019, 179, 1441-1445.	28.9	6

#	Article	IF	CITATIONS
19	Chronic TLR7 and TLR9 signaling drives anemia via differentiation of specialized hemophagocytes. Science, 2019, 363, .	12.6	82
20	The Emergence and Functional Fitness of Memory CD4+ T Cells Require the Transcription Factor Thpok. Immunity, 2019, 50, 91-105.e4.	14.3	94
21	De novo design of potent and selective mimics of IL-2 and IL-15. Nature, 2019, 565, 186-191.	27.8	362
22	NKTeeing Up B Cell Responses to Viral Infection. Immunity, 2018, 48, 198-200.	14.3	3
23	Humoral immune responses to infection: common mechanisms and unique strategies to combat pathogen immune evasion tactics. Current Opinion in Immunology, 2018, 51, 46-54.	5.5	25
24	Memory B cell heterogeneity: Remembrance of things past. Journal of Leukocyte Biology, 2018, 103, 269-274.	3.3	31
25	ILâ€2 is required for the generation of viralâ€specific CD4 ⁺ Th1 tissueâ€resident memory cells and B cells are essential for maintenance in the lung. European Journal of Immunology, 2018, 48, 80-86.	2.9	34
26	Sentinels of the Type 2 Immune Response. Trends in Immunology, 2018, 39, 99-111.	6.8	27
27	Generation of Allergen-Specific Tetramers for a Murine Model of Airway Inflammation. Methods in Molecular Biology, 2018, 1799, 165-181.	0.9	4
28	cGAS-mediated control of blood-stage malaria promotes Plasmodium-specific germinal center responses. JCI Insight, 2018, 3, .	5.0	30
29	Embracing diversity gives antibodies the power to bind. Immunology and Cell Biology, 2017, 95, 862-863.	2.3	1
30	Blood Stage Malaria Disrupts Humoral Immunity to the Pre-erythrocytic Stage Circumsporozoite Protein. Cell Reports, 2016, 17, 3193-3205.	6.4	71
31	Somatically Hypermutated Plasmodium-Specific IgM+ Memory B Cells Are Rapid, Plastic, Early Responders upon Malaria Rechallenge. Immunity, 2016, 45, 402-414.	14.3	229
32	Interleukin-2-Dependent Allergen-Specific Tissue-Resident Memory Cells Drive Asthma. Immunity, 2016, 44, 155-166.	14.3	223
33	Stepwise B-cell-dependent expansion of T helper clonotypes diversifies the T-cell response. Nature Communications, 2016, 7, 10281.	12.8	24
34	Antibodies to Interleukin-2 Elicit Selective T Cell Subset Potentiation through Distinct Conformational Mechanisms. Immunity, 2015, 42, 815-825.	14.3	191
35	ICOS Coreceptor Signaling Inactivates the Transcription Factor FOXO1 to Promote Tfh Cell Differentiation. Immunity, 2015, 42, 239-251.	14.3	204
36	Lymphocytic choriomeningitis virus persistence promotes effector-like memory differentiation and enhances mucosal T cell distribution. Journal of Leukocyte Biology, 2015, 97, 217-225.	3.3	48

#	Article	IF	CITATIONS
37	TCR ITAM multiplicity is required for the generation of follicular helper T-cells. Nature Communications, 2015, 6, 6982.	12.8	27
38	\hat{l}^2 -Catenin Signaling Drives Differentiation and Proinflammatory Function of IRF8-Dependent Dendritic Cells. Journal of Immunology, 2015, 194, 210-222.	0.8	37
39	Clonotypic Composition of the CD4+T Cell Response to a Vectored Retroviral Antigen Is Determined by Its Speed. Journal of Immunology, 2014, 193, 1567-1577.	0.8	12
40	Removing T-cell epitopes with computational protein design. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8577-8582.	7.1	115
41	Parasite Fate and Involvement of Infected Cells in the Induction of CD4+ and CD8+ T Cell Responses to Toxoplasma gondii. PLoS Pathogens, 2014, 10, e1004047.	4.7	86
42	Antibody and B cell responses to Plasmodium sporozoites. Frontiers in Microbiology, 2014, 5, 625.	3.5	52
43	Type I interferons directly inhibit regulatory T cells to allow optimal antiviral T cell responses during acute LCMV infection. Journal of Experimental Medicine, 2014, 211, 961-974.	8.5	150
44	Inflammatory interference of memory formation. Trends in Immunology, 2014, 35, 355-357.	6.8	1
45	Acute Gastrointestinal Infection Induces Long-Lived Microbiota-Specific T Cell Responses. Science, 2012, 337, 1553-1556.	12.6	331
46	Opposing Signals from the Bcl6 Transcription Factor and the Interleukin-2 Receptor Generate T Helper 1 Central and Effector Memory Cells. Immunity, 2011, 35, 583-595.	14.3	378
47	Origins of CD4+ effector and central memory T cells. Nature Immunology, 2011, 12, 467-471.	14.5	325
48	Robust Antigen Specific Th17 T Cell Response to Group A Streptococcus Is Dependent on IL-6 and Intranasal Route of Infection. PLoS Pathogens, 2011, 7, e1002252.	4.7	87
49	Different routes of bacterial infection induce long-lived TH1 memory cells and short-lived TH17 cells. Nature Immunology, 2010, 11, 83-89.	14.5	247
50	Tracking epitope-specific T cells. Nature Protocols, 2009, 4, 565-581.	12.0	263
51	Behavior of Parasite-Specific Effector CD8+ T Cells in the Brain and Visualization of a Kinesis-Associated System of Reticular Fibers. Immunity, 2009, 30, 300-311.	14.3	184
52	Plasmacytoid Dendritic Cells Are Activated by <i>Toxoplasma gondii</i> to Present Antigen and Produce Cytokines. Journal of Immunology, 2008, 180, 6229-6236.	0.8	97
53	Naive CD4+ T Cell Frequency Varies for Different Epitopes and Predicts Repertoire Diversity and Response Magnitude. Immunity, 2007, 27, 203-213.	14.3	857