
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1090128/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Catalytic properties of cyclo-carbon clusters: An investigation on o <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si4.svg"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub> activation and CO oxidation. Surface Science, 2022, 720, 122050.</mml:math 	1.9	6
2	Indentation of graphene nano-bubbles. Nanoscale, 2022, , .	5.6	2
3	Trilayer Metal–Organic Frameworks as Multifunctional Electrocatalysts for Energy Conversion and Storage Applications. Journal of the American Chemical Society, 2022, 144, 3411-3428.	13.7	142
4	Comment on "Two-dimensional carbon nitride C6N nanosheet with egg-comb-like structure and electronic properties of a semimetal [Nanotechnology 2021, 32, 215702]〕 Nanotechnology, 2022, , .	2.6	0
5	Electronic Properties of Oxidized Graphene: Effects of Strain and an Electric Field on Flat Bands and the Energy Gap. Journal of Physical Chemistry Letters, 2022, 13, 66-74.	4.6	5
6	Comment on "A novel two-dimensional boron-carbon-nitride (BCN) monolayer: A first-principles insight―[J. Appl. Phys. 130, 114301 (2021)]. Journal of Applied Physics, 2022, 131, 216101.	2.5	0
7	Hydration effects and negative dielectric constant of nano-confined water between cation intercalated MXenes. Nanoscale, 2021, 13, 922-929.	5.6	7
8	Abnormal Dielectric Constant of Nanoconfined Water between Graphene Layers in the Presence of Salt. Journal of Physical Chemistry B, 2021, 125, 1604-1610.	2.6	19
9	Abnormal in-plane permittivity and ferroelectricity of confined water: From sub-nanometer channels to bulk. Journal of Chemical Physics, 2021, 154, 114503.	3.0	14
10	Oscillation in the electrical conductivity of a thick graphene oxide membrane. Journal of Applied Physics, 2021, 129, 235105.	2.5	1
11	Tunable natural terahertz and mid-infrared hyperbolic plasmons in carbon phosphide. Carbon, 2021, 178, 625-631.	10.3	12
12	The inhibition performance of quinoa seed on corrosion behavior of carbon steel in the HCl solution; theoretical and experimental evaluations. Journal of Molecular Liquids, 2021, 335, 116183.	4.9	26
13	Breakdown of Universal Scaling for Nanometer-Sized Bubbles in Graphene. Nano Letters, 2021, 21, 8103-8110.	9.1	23
14	The interaction between atomic-scale pores and particles. Journal of Physics Condensed Matter, 2021, 34, .	1.8	0
15	Evaluating gas permeance through graphene nanopores and porous 2D-membranes: A generalized approach. Carbon Trends, 2021, 5, 100086.	3.0	2
16	Gas Permeability and Selectivity of a Porous WS ₂ Monolayer. Journal of Physical Chemistry C, 2021, 125, 25055-25066.	3.1	11
17	Out-of-plane permittivity of confined water. Physical Review E, 2020, 102, 022803.	2.1	35
18	Gas flow through atomic-scale apertures. Science Advances, 2020, 6, .	10.3	22

#	Article	IF	CITATIONS
19	Optoelectronic properties of confined water in angstrom-scale slits. Physical Review B, 2020, 102, .	3.2	6
20	Electronic, dielectric, and optical properties of two-dimensional and bulk ice: A multiscale simulation study. Physical Review B, 2020, 101, .	3.2	13
21	Tuning the electronic properties of graphene–graphitic carbon nitride heterostructures and heterojunctions by using an electric field. Physical Review B, 2020, 101, .	3.2	54
22	Two-dimensional graphitic carbon nitrides: Strain-tunable ferromagnetic ordering. Physical Review B, 2020, 101, .	3.2	37
23	Mechanical properties of twin graphene subjected to uniaxial stress by molecular dynamic simulation. Materials Research Express, 2019, 6, 105611.	1.6	10
24	Self-Limiting Growth of Two-Dimensional Palladium between Graphene Oxide Layers. Nano Letters, 2019, 19, 4678-4683.	9.1	18
25	Ionized water confined in graphene nanochannels. Physical Chemistry Chemical Physics, 2019, 21, 9285-9295.	2.8	10
26	Electric-field-induced emergent electrical connectivity in graphene oxide. Physical Review B, 2019, 99, .	3.2	3
27	Electrostrictive behavior of confined water subjected to GPa pressure. Physical Review B, 2018, 97, .	3.2	8
28	Transport of hydrogen isotopes through interlayer spacing in van der Waals crystals. Nature Nanotechnology, 2018, 13, 468-472.	31.5	45
29	Electrically controlled water permeation through graphene oxide membranes. Nature, 2018, 559, 236-240.	27.8	263
30	Fast water flow through graphene nanocapillaries: A continuum model approach involving the microscopic structure of confined water. Applied Physics Letters, 2018, 113, .	3.3	34
31	Slippage dynamics of confined water in graphene oxide capillaries. Physical Review Materials, 2018, 2, .	2.4	8
32	Thermal activated rotation of graphene flake on graphene. 2D Materials, 2017, 4, 025015.	4.4	21
33	Electro- and opto-mutable properties of MgO nanoclusters adsorbed on mono- and double-layer graphene. Nanoscale, 2017, 9, 4205-4218.	5.6	24
34	Reversible structural transition in nanoconfined ice. Physical Review B, 2017, 95, .	3.2	28
35	Dependence of the shape of graphene nanobubbles on trapped substance. Nature Communications, 2017, 8, 15844.	12.8	65
36	Temperature distribution in graphene doped with nitrogen and graphene with grain boundary. Journal of Molecular Graphics and Modelling, 2017, 74, 100-104.	2.4	14

#	Article	IF	CITATIONS
37	Large CO ₂ uptake on a monolayer of CaO. Journal of Materials Chemistry A, 2017, 5, 2110-2114.	10.3	7
38	Unconventional two-dimensional vibrations of a decorated carbon nanotube under electric field: linking actuation to advanced sensing ability. Scientific Reports, 2017, 7, 13481.	3.3	1
39	The formation of Cr2O3 nanoclusters over graphene sheet and carbon nanotubes. Chemical Physics Letters, 2017, 687, 188-193.	2.6	5
40	Spatial design and control of graphene flake motion. Physical Review B, 2017, 96, .	3.2	4
41	Monolayer alkali and transition-metal monoxides: MgO, CaO, MnO, and NiO. Physical Review B, 2017, 95,	3.2	25
42	Anomalous Dynamical Behavior of Freestanding Graphene Membranes. Physical Review Letters, 2016, 117, 126801.	7.8	59
43	Electric-field-induced structural changes in water confined between two graphene layers. Physical Review B, 2016, 94, .	3.2	36
44	N-doped graphene: Polarization effects and structural properties. Physical Review B, 2016, 93, .	3.2	16
45	Static flexural modes and piezoelectricity in 2D and layered crystals. Physica Status Solidi (B): Basic Research, 2016, 253, 2311-2315.	1.5	5
46	Van der Waals pressure and its effect on trapped interlayer molecules. Nature Communications, 2016, 7, 12168.	12.8	137
47	Commensurability Effects in Viscosity of Nanoconfined Water. ACS Nano, 2016, 10, 3685-3692.	14.6	198
48	Graphene-silicene bilayer: A nanocapacitor with permanent dipole and piezoelectricity effect. Physical Review B, 2015, 92, .	3.2	20
49	Partially hydrogenated and fluorinated graphene: Structure, roughness, and negative thermal expansion. Physical Review B, 2015, 92, .	3.2	6
50	AA-stacked bilayer square ice between graphene layers. Physical Review B, 2015, 92, .	3.2	48
51	Rippling, buckling, and melting of single- and multilayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi mathvariant="normal">MoS</mml:mi </mml:mrow><mml:mn>2</mml:mn></mml:msub>. Physical Review B. 2015, 91</mml:math 	3.2	41
52	Diffusion of fluorine on and between graphene layers. Physical Review B, 2015, 91, .	3.2	17
53	Graphene ripples as a realization of a two-dimensional Ising model: A scanning tunneling microscope study. Physical Review B, 2015, 91, .	3.2	22
54	Molecular dynamics simulation of temperature profile in partially hydrogenated graphene and graphene with grain boundary. Journal of Molecular Graphics and Modelling, 2015, 62, 38-42.	2.4	5

#	Article	IF	CITATIONS
55	Membrane amplitude and triaxial stress in twisted bilayer graphene deciphered using first-principles directed elasticity theory and scanning tunneling microscopy. Physical Review B, 2014, 90, .	3.2	11
56	Graphene on hexagonal lattice substrate: Stress and pseudo-magnetic field. Applied Physics Letters, 2014, 104, .	3.3	20
57	The effects of temperature and vacancies on dynamics of crack in graphene sheet. AIP Advances, 2014, 4,	1.3	14
58	Unusual ultra-low-frequency fluctuations in freestanding graphene. Nature Communications, 2014, 5, 3720.	12.8	69
59	Stabilized silicene within bilayer graphene: A proposal based on molecular dynamics and density-functional tight-binding calculations. Physical Review B, 2014, 89, .	3.2	51
60	Electronic properties of graphene nano-flakes: Energy gap, permanent dipole, termination effect, and Raman spectroscopy. Journal of Chemical Physics, 2014, 140, 074304.	3.0	35
61	The different adsorption mechanism of methane molecule onto a boron nitride and a graphene flakes. Journal of Applied Physics, 2014, 116, .	2.5	16
62	Multilayer graphene, Moiré patterns, grain boundaries and defects identified by scanning tunneling microscopy on the m-plane, non-polar surface of SiC. Carbon, 2014, 80, 75-81.	10.3	16
63	Graphene on boron-nitride: Moiré pattern in the van der Waals energy. Applied Physics Letters, 2014, 104, .	3.3	66
64	Thermal mirror buckling in freestanding graphene locally controlled by scanning tunnelling microscopy. Nature Communications, 2014, 5, 4962.	12.8	43
65	Melting of Partially Fluorinated Graphene: From Detachment of Fluorine Atoms to Large Defects and Random Coils. Journal of Physical Chemistry C, 2014, 118, 4460-4464.	3.1	17
66	Self-Organized Platinum Nanoparticles on Freestanding Graphene. ACS Nano, 2014, 8, 2697-2703.	14.6	39
67	Electronic structure of a hexagonal graphene flake subjected to triaxial stress. Physical Review B, 2013, 88, .	3.2	52
68	Realization of free-standing silicene using bilayer graphene. Applied Physics Letters, 2013, 103, .	3.3	80
69	Doping effect on the adsorption of NH3 molecule onto graphene quantum dot: From the physisorption to the chemisorption. Journal of Applied Physics, 2013, 114, .	2.5	18
70	Spiral graphone and one-sided fluorographene nanoribbons. Physical Review B, 2013, 87, .	3.2	17
71	Melting of graphene clusters. Physical Review B, 2013, 87, .	3.2	30
72	Thermal properties of fluorinated graphene. Physical Review B, 2013, 87, .	3.2	91

#	Article	IF	CITATIONS
73	Boron Nitride Monolayer: A Strain-Tunable Nanosensor. Journal of Physical Chemistry C, 2013, 117, 13261-13267.	3.1	45
74	Thermomechanical properties of a single hexagonal boron nitride sheet. Physical Review B, 2013, 87, .	3.2	87
75	Induced polarization and electronic properties of carbon-doped boron nitride nanoribbons. Physical Review B, 2012, 86, .	3.2	43
76	Methane molecule over the defected and rippled graphene sheet. Solid State Communications, 2012, 152, 1493-1496.	1.9	17
77	Effect of grain boundary on the buckling of graphene nanoribbons. Applied Physics Letters, 2012, 100, .	3.3	18
78	Thermomechanical properties of graphene: valence force field model approach. Journal of Physics Condensed Matter, 2012, 24, 175303.	1.8	24
79	Strain-engineered graphene through a nanostructured substrate. I. Deformations. Physical Review B, 2012, 85, .	3.2	57
80	Strain-engineered graphene through a nanostructured substrate. II. Pseudomagnetic fields. Physical Review B, 2012, 85, .	3.2	30
81	Thermal rippling behavior of graphane. Physical Review B, 2012, 86, .	3.2	47
82	Nanoengineered nonuniform strain in graphene using nanopillars. Physical Review B, 2012, 86, .	3.2	55
83	Van der Waals energy surface of a carbon nanotube sheet. Solid State Communications, 2012, 152, 225-230.	1.9	4
84	Directed motion of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:msub><mml:mi mathvariant="normal">C<mml:mrow><mml:mn>60</mml:mn></mml:mrow></mml:mi </mml:msub>a graphene sheet subjected to a temperature gradient. Physical Review E, 2011, 83, 042601.</mml:mrow></mml:math>	ow ^{2.1} /mml	:math>on
85	Lattice thermal properties of graphane: Thermal contraction, roughness, and heat capacity. Physical Review B, 2011, 83, .	3.2	47
86	Comment on "lrreversibility in Response to Forces Acting on Graphene Sheets― Physical Review Letters, 2011, 106, 209701; author reply 209702.	7.8	3
87	Buckled circular monolayer graphene: a graphene nano-bowl. Journal of Physics Condensed Matter, 2011, 23, 045002.	1.8	24
88	Nanoindentation of a circular sheet of bilayer graphene. Physical Review B, 2010, 81, .	3.2	118
89	Stochastic motion of noble gases on a graphene sheet. Computational Materials Science, 2010, 49, 839-844.	3.0	10
	Diffusive motion of < mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"		

display="inline"><mml:mrow><mml:msub><mml:mtext>C</mml:mtext><mml:mrow><mml:mn>60</mml:mn></mml:mrow>44mml:msub><a graphene sheet. Physical Review E, 2010, 82, 051605.</p>

#	Article	IF	CITATIONS
91	Graphene nanoribbons subjected to axial stress. Physical Review B, 2010, 82, .	3.2	92
92	Defected graphene nanoribbons under axial compression. Applied Physics Letters, 2010, 97, .	3.3	50
93	Linear reduction of stiffness and vibration frequencies in defected circular monolayer graphene. Physical Review B, 2010, 81, .	3.2	43
94	Electric field effects on Nano-Scale bio-membrane of spherical cells. Physica A: Statistical Mechanics and Its Applications, 2009, 388, 120-128.	2.6	4
95	The formation of atomic nanoclusters on graphene sheets. Nanotechnology, 2009, 20, 135602.	2.6	89
96	Ground state study of simple atoms within a nanoscale box. Solid State Communications, 2008, 145, 594-599.	1.9	4
97	Effective potential of longitudinal interactions between microtubule protofilaments. Physical Review E, 2008, 78, 011912.	2.1	0
98	Study of Hydrogen Molecule and Hydrogen Molecular Ion Confined in C ₆₀ Fullerene. Journal of Computational and Theoretical Nanoscience, 2008, 5, 366-374.	0.4	2
99	Enhanced roughness of lipid membranes caused by external electric fields. Computational Materials Science, 2007, 41, 202-207.	3.0	2
100	Ground-state properties of a confined simple atom by C60fullerene. Journal of Physics B: Atomic, Molecular and Optical Physics, 2007, 40, 1509-1521.	1.5	19
101	Asymmetric simple exclusion process describing conflicting traffic flows. Europhysics Letters, 2007, 80, 60002.	2.0	41
102	Roughness of undoped graphene and its short-range induced gauge field. Physical Review B, 2007, 76, .	3.2	61
103	Monte Carlo simulation of size effects on thermal conductivity in a two-dimensional Ising system. Physica A: Statistical Mechanics and Its Applications, 2006, 371, 424-432.	2.6	8
104	Molecular Dynamics Simulation of the Thermal Conductivity of Fcc Metallic Nanocrystals. Journal of Computational and Theoretical Nanoscience, 2005, 2, 438-442.	0.4	0
105	Editorial: Nanoconfined Fluids in Energy Applications. Frontiers in Energy Research, 0, 10, .	2.3	0