
Ben Trevaskis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1090025/publications.pdf Version: 2024-02-01

REN TREVASKIS

#	Article	IF	CITATIONS
1	A Vernalization Response in a Winter Safflower (Carthamus tinctorius) Involves the Upregulation of Homologs of FT, FUL, and MAF. Frontiers in Plant Science, 2021, 12, 639014.	3.6	5
2	Increased aboveâ€ground resource allocation is a likely precursor for independent evolutionary origins of annuality in the Pooideae grass subfamily. New Phytologist, 2020, 228, 318-329.	7.3	20
3	Phenology and related traits for wheat adaptation. Heredity, 2020, 125, 417-430.	2.6	91
4	An allelic based phenological model to predict phasic development of wheat (Triticum aestivum L.). Field Crops Research, 2020, 249, 107722.	5.1	9
5	A roadmap for gene functional characterisation in crops with large genomes: Lessons from polyploid wheat. ELife, 2020, 9, .	6.0	78
6	Early sowing systems can boost Australian wheat yields despite recent climate change. Nature Climate Change, 2019, 9, 244-247.	18.8	141
7	Fast winter wheat phenology can stabilise flowering date and maximise grain yield in semi-arid Mediterranean and temperate environments. Field Crops Research, 2018, 223, 12-25.	5.1	66
8	Zebularine treatment is associated with deletion of <i>FT</i> â€ <i>B1</i> leading to an increase in spikelet number in bread wheat. Plant, Cell and Environment, 2018, 41, 1346-1360.	5.7	36
9	VERNALIZATION1 Modulates Root System Architecture in Wheat and Barley. Molecular Plant, 2018, 11, 226-229.	8.3	118
10	Ability of alleles of PPD1 and VRN1 genes to predict flowering time in diverse Australian wheat (Triticum aestivum) cultivars in controlled environments. Crop and Pasture Science, 2018, 69, 1061.	1.5	22
11	Developmental Pathways Are Blueprints for Designing Successful Crops. Frontiers in Plant Science, 2018, 9, 745.	3.6	17
12	A linked SNP marker to genotype Fr-B2 in wheat. Crop and Pasture Science, 2018, 69, 859.	1.5	4
13	Vernalisation and photoperiod sensitivity in wheat: The response of floret fertility and grain number is affected by vernalisation status. Field Crops Research, 2017, 203, 243-255.	5.1	27
14	New alleles of the wheat domestication gene <i>Q</i> reveal multiple roles in growth and reproductive development. Development (Cambridge), 2017, 144, 1959-1965.	2.5	74
15	Vernalisation and photoperiod sensitivity in wheat: Impact on canopy development and yield components. Field Crops Research, 2017, 201, 108-121.	5.1	34
16	Barley (<i>Hordeum vulgare</i>) circadian clock genes can respond rapidly to temperature in an <i>EARLY FLOWERING 3</i> -dependent manner. Journal of Experimental Botany, 2016, 67, 5517-5528.	4.8	67
17	Frost-tolerance genes Fr-A2 and Fr-B2 in Australian wheat and their effects on days to heading and grain yield in lower rainfall environments in southern Australia. Crop and Pasture Science, 2016, 67, 119.	1.5	7
18	Dawn and Dusk Set States of the Circadian Oscillator in Sprouting Barley (Hordeum vulgare) Seedlings. PLoS ONE, 2015, 10, e0129781.	2.5	17

BEN TREVASKIS

#	Article	IF	CITATIONS
19	Genetic variation in the flowering and yield formation of timothy (Phleum pratense L.) accessions after different photoperiod and vernalization treatments. Frontiers in Plant Science, 2015, 6, 465.	3.6	7
20	Ppd-1 is a key regulator of inflorescence architecture and paired spikelet development in wheat. Nature Plants, 2015, 1, 14016.	9.3	186
21	Direct links between the vernalization response and other key traits of cereal crops. Nature Communications, 2015, 6, 5882.	12.8	177
22	Breeding effects on dry matter accumulation and partitioning in Spanish bread wheat during the 20th century. Euphytica, 2015, 203, 321-336.	1.2	10
23	Wheat gene for all seasons. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11991-11992.	7.1	3
24	The Relationships between Development and Low Temperature Tolerance in Barley Near Isogenic Lines Differing for Flowering Behavior. Plant and Cell Physiology, 2015, 56, 2312-2324.	3.1	27
25	The role of seasonal flowering responses in adaptation of grasses to temperate climates. Frontiers in Plant Science, 2014, 5, 431.	3.6	82
26	<i>EARLY FLOWERING3</i> Regulates Flowering in Spring Barley by Mediating Gibberellin Production and <i>FLOWERING LOCUS T</i> Expression Â. Plant Cell, 2014, 26, 1557-1569.	6.6	121
27	Ppd1, Vrn1, ALMT1 and Rht genes and their effects on grain yield in lower rainfall environments in southern Australia. Crop and Pasture Science, 2014, 65, 159.	1.5	27
28	Ppd-B1 and Ppd-D1 and their effects in southern Australian wheat. Crop and Pasture Science, 2013, 64, 100.	1.5	81
29	Low temperatures induce rapid changes in chromatin state and transcript levels of the cereal VERNALIZATION1 gene. Journal of Experimental Botany, 2013, 64, 2413-2422.	4.8	78
30	Identification of High-Temperature-Responsive Genes in Cereals Â. Plant Physiology, 2012, 158, 1439-1450.	4.8	59
31	The Promoter of the Cereal VERNALIZATION1 Gene Is Sufficient for Transcriptional Induction by Prolonged Cold. PLoS ONE, 2011, 6, e29456.	2.5	44
32	Transcriptome Analysis of the Vernalization Response in Barley (Hordeum vulgare) Seedlings. PLoS ONE, 2011, 6, e17900.	2.5	49
33	Make hay when the sun shines: The role of MADS-box genes in temperature-dependant seasonal flowering responses. Plant Science, 2011, 180, 447-453.	3.6	58
34	Veery wheats carry an allele of <i>Vrnâ€A1</i> that has implications for freezing tolerance in winter wheats. Plant Breeding, 2011, 130, 413-418.	1.9	50
35	<i>ODDSOC2</i> Is a MADS Box Floral Repressor That Is Down-Regulated by Vernalization in Temperate Cereals Â. Plant Physiology, 2010, 153, 1062-1073.	4.8	88
36	The central role of the VERNALIZATION1 gene in the vernalization response of cereals. Functional Plant Biology, 2010, 37, 479.	2.1	136

BEN TREVASKIS

#	Article	IF	CITATIONS
37	Vernalization-induced flowering in cereals is associated with changes in histone methylation at the <i>VERNALIZATION1</i> gene. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8386-8391.	7.1	208
38	The influence of vernalization and daylength on expression of flowering-time genes in the shoot apex and leaves of barley (Hordeum vulgare) Journal of Experimental Botany, 2009, 60, 2169-2178.	4.8	107
39	Regions associated with repression of the barley (Hordeum vulgare) VERNALIZATION1 gene are not required for cold induction. Molecular Genetics and Genomics, 2009, 282, 107-117.	2.1	103
40	The molecular biology of seasonal flowering-responses in Arabidopsis and the cereals. Annals of Botany, 2009, 103, 1165-1172.	2.9	245
41	Integration of seasonal flowering time responses in temperate cereals. Plant Signaling and Behavior, 2008, 3, 601-602.	2.4	4
42	Low-Temperature and Daylength Cues Are Integrated to Regulate <i>FLOWERING LOCUS T</i> in Barley Â Â. Plant Physiology, 2008, 147, 355-366.	4.8	212
43	Short Vegetative Phase-Like MADS-Box Genes Inhibit Floral Meristem Identity in Barley. Plant Physiology, 2007, 143, 225-235.	4.8	174
44	The molecular basis of vernalization-induced flowering in cereals. Trends in Plant Science, 2007, 12, 352-357.	8.8	340
45	HvVRN2 Responds to Daylength, whereas HvVRN1 Is Regulated by Vernalization and Developmental Status. Plant Physiology, 2006, 140, 1397-1405.	4.8	209
46	Molecular and Cell Biology of a Family of Voltage-Dependent Anion Channel Porins in Lotus japonicus. Plant Physiology, 2004, 134, 182-193.	4.8	67
47	MADS box genes control vernalization-induced flowering in cereals. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13099-13104.	7.1	409
48	GmZIP1 Encodes a Symbiosis-specific Zinc Transporter in Soybean. Journal of Biological Chemistry, 2002, 277, 4738-4746.	3.4	140
49	Increased level of hemoglobin 1 enhances survival of hypoxic stress and promotes early growth in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 17197-17202.	7.1	170
50	The Soybean GmN6L Gene Encodes a Late Nodulin Expressed in the Infected Zone of Nitrogen-Fixing Nodules. Molecular Plant-Microbe Interactions, 2002, 15, 630-636.	2.6	24
51	Novel Aspects of Symbiotic Nitrogen Fixation Uncovered by Transcript Profiling with cDNA Arrays. Molecular Plant-Microbe Interactions, 2002, 15, 411-420.	2.6	129
52	Differentiation of Plant Cells During Symbiotic Nitrogen Fixation. Comparative and Functional Genomics, 2002, 3, 151-157.	2.0	17
53	Symbiotic nitrogen fixation research in the postgenomics era. New Phytologist, 2002, 153, 37-42.	7.3	52
54	Lotus japonicus functional genomics: cDNA microarray analysis uncovers novel nodulins , 2002, , 109-112.		0

BEN TREVASKIS

#	Article	IF	CITATIONS
55	Title is missing!. Plant and Soil, 2001, 231, 151-160.	3.7	61
56	Expression and evolution of functionally distinct haemoglobin genes in plants. Plant Molecular Biology, 2001, 47, 677-692.	3.9	139
57	Strategies of Gene Action in Arabidopsis during Hypoxia. Annals of Botany, 1997, 79, 21-31.	2.9	78
58	Two hemoglobin genes in Arabidopsis thaliana: The evolutionary origins of leghemoglobins. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 12230-12234.	7.1	253