
Fernando Arenzana-Seisdedos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10897147/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stromal Fibroblasts Present in Invasive Human Breast Carcinomas Promote Tumor Growth and Angiogenesis through Elevated SDF-1/CXCL12 Secretion. Cell, 2005, 121, 335-348.	28.9	3,273
2	The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1. Nature, 1996, 382, 833-835.	27.8	1,662
3	G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nature Immunology, 2002, 3, 687-694.	14.5	1,215
4	The Chemokine SDF-1/CXCL12 Binds to and Signals through the Orphan Receptor RDC1 in T Lymphocytes. Journal of Biological Chemistry, 2005, 280, 35760-35766.	3.4	895
5	HIV Coreceptor Downregulation as Antiviral Principle: SDF-1α–dependent Internalization of the Chemokine Receptor CXCR4 Contributes to Inhibition of HIV Replication. Journal of Experimental Medicine, 1997, 186, 139-146.	8.5	557
6	HGF, SDF-1, and MMP-9 are involved in stress-induced human CD34+ stem cell recruitment to the liver. Journal of Clinical Investigation, 2003, 112, 160-169.	8.2	526
7	Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem cell function. Journal of Clinical Investigation, 2000, 106, 1331-1339.	8.2	516
8	A Mouse Model for Chikungunya: Young Age and Inefficient Type-I Interferon Signaling Are Risk Factors for Severe Disease. PLoS Pathogens, 2008, 4, e29.	4.7	506
9	Dendriticâ€cellâ€specific ICAM3â€grabbing nonâ€integrin is essential for the productive infection of human dendritic cells by mosquitoâ€cellâ€derived dengue viruses. EMBO Reports, 2003, 4, 723-728.	4.5	436
10	Characterization of Reemerging Chikungunya Virus. PLoS Pathogens, 2007, 3, e89.	4.7	401
11	Multidisciplinary Prospective Study of Mother-to-Child Chikungunya Virus Infections on the Island of La Réunion. PLoS Medicine, 2008, 5, e60.	8.4	389
12	Human Cytomegalovirus Binding to DC-SIGN Is Required for Dendritic Cell Infection and Target Cell trans-Infection. Immunity, 2002, 17, 653-664.	14.3	329
13	DC-SIGN and L-SIGN Are High Affinity Binding Receptors for Hepatitis C Virus Glycoprotein E2. Journal of Biological Chemistry, 2003, 278, 20358-20366.	3.4	319
14	Persistent Induction of the Chemokine Receptor CXCR4 by TGF-β1 on Synovial T Cells Contributes to Their Accumulation Within the Rheumatoid Synovium. Journal of Immunology, 2000, 165, 3423-3429.	0.8	308
15	Stromal Cell-derived Factor-1α Associates with Heparan Sulfates through the First β-Strand of the Chemokine. Journal of Biological Chemistry, 1999, 274, 23916-23925.	3.4	296
16	Chemokine Sequestration by Viral Chemoreceptors as a Novel Viral Escape Strategy: Withdrawal of Chemokines from the Environment of Cytomegalovirus-infected Cells. Journal of Experimental Medicine, 1998, 188, 855-866.	8.5	286
17	HIV blocked by chemokine antagonist. Nature, 1996, 383, 400-400.	27.8	273
18	Role of the αâ€chemokine stromal cellâ€derived factor (SDFâ€1) in the developing and mature central nervous system. Glia, 2003, 42, 139-148.	4.9	272

#	Article	IF	CITATIONS
19	WHIM syndromes with different genetic anomalies are accounted for by impaired CXCR4 desensitization to CXCL12. Blood, 2005, 105, 2449-2457.	1.4	268
20	HIV-1-resistance phenotype conferred by combination of two separate inherited mutations of CCR5 gene. Lancet, The, 1998, 351, 14-18.	13.7	266
21	Type I IFN controls chikungunya virus via its action on nonhematopoietic cells. Journal of Experimental Medicine, 2010, 207, 429-442.	8.5	262
22	Stromal-Cell Derived Factor Is Expressed by Dendritic Cells and Endothelium in Human Skin. American Journal of Pathology, 1999, 155, 1577-1586.	3.8	224
23	Role of I Bα Ubiquitination in Signal-induced Activation of NF- B in Vivo. Journal of Biological Chemistry, 1996, 271, 7844-7850.	3.4	206
24	Dendritic Cell-specific Intercellular Adhesion Molecule 3-grabbing Non-integrin (DC-SIGN)-mediated Enhancement of Dengue Virus Infection Is Independent of DC-SIGN Internalization Signals. Journal of Biological Chemistry, 2005, 280, 23698-23708.	3.4	203
25	Leukocyte Elastase Negatively Regulates Stromal Cell-derived Factor-1 (SDF-1)/CXCR4 Binding and Functions by Amino-terminal Processing of SDF-1 and CXCR4. Journal of Biological Chemistry, 2002, 277, 15677-15689.	3.4	189
26	C-type Lectins L-SIGN and DC-SIGN Capture and Transmit Infectious Hepatitis C Virus Pseudotype Particles. Journal of Biological Chemistry, 2004, 279, 32035-32045.	3.4	166
27	ISG15 Is Critical in the Control of Chikungunya Virus Infection Independent of UbE1L Mediated Conjugation. PLoS Pathogens, 2011, 7, e1002322.	4.7	165
28	CXCR4 dimerization and β-arrestin–mediated signaling account for the enhanced chemotaxis to CXCL12 in WHIM syndrome. Blood, 2008, 112, 34-44.	1.4	147
29	Differential signalling of the chemokine receptor CXCR4 by stromal cellâ€derived factor 1 and the HIV glycoprotein in rat neurons and astrocytes. European Journal of Neuroscience, 2000, 12, 117-125.	2.6	146
30	Antiviral Activity of the Proteasome on Incoming Human Immunodeficiency Virus Type 1. Journal of Virology, 1998, 72, 3845-3850.	3.4	140
31	The secondary fungal metabolite gliotoxin targets proteolytic activities of the proteasome. Chemistry and Biology, 1999, 6, 689-698.	6.0	133
32	Infection of Dendritic Cells (DCs), Not DC-SIGN-Mediated Internalization of Human Immunodeficiency Virus, Is Required for Long-Term Transfer of Virus to T Cells. Journal of Virology, 2006, 80, 2949-2957.	3.4	128
33	Palmitoylation-dependent Control of Degradation, Life Span, and Membrane Expression of the CCR5 Receptor. Journal of Biological Chemistry, 2001, 276, 31936-31944.	3.4	126
34	Inducible Degradation of lκBα by the Proteasome Requires Interaction with the F-box Protein h-βTrCP. Journal of Biological Chemistry, 1999, 274, 7941-7945.	3.4	120
35	Involvement of the CXCL12/CXCR4 Pathway in the Recovery of Skin Following Burns. Journal of Investigative Dermatology, 2006, 126, 468-476.	0.7	120
36	Leukocyte analysis from WHIM syndrome patients reveals a pivotal role for GRK3 in CXCR4 signaling. Journal of Clinical Investigation, 2008, 118, 1074-84.	8.2	111

#	Article	IF	CITATIONS
37	The sweet spot: how GAGs help chemokines guide migrating cells. Journal of Leukocyte Biology, 2016, 99, 935-953.	3.3	104
38	Genetics of resistance to HIV infection: Role of co-receptors and co-receptor ligands. Seminars in Immunology, 2006, 18, 387-403.	5.6	101
39	Allosteric Model of Maraviroc Binding to CC Chemokine Receptor 5 (CCR5). Journal of Biological Chemistry, 2011, 286, 33409-33421.	3.4	101
40	HIV-1 Entry into T-cells Is Not Dependent on CD4 and CCR5 Localization to Sphingolipid-enriched, Detergent-resistant, Raft Membrane Domains. Journal of Biological Chemistry, 2003, 278, 3153-3161.	3.4	95
41	The Novel CXCL12Î ³ Isoform Encodes an Unstructured Cationic Domain Which Regulates Bioactivity and Interaction with Both Glycosaminoglycans and CXCR4. PLoS ONE, 2007, 2, e1110.	2.5	95
42	Small Neutralizing Molecules to Inhibit Actions of the Chemokine CXCL12. Journal of Biological Chemistry, 2008, 283, 23189-23199.	3.4	85
43	CXCR4-Tropic HIV-1 Envelope Glycoprotein Functions as a Viral Chemokine in Unstimulated Primary CD4+ T Lymphocytes. Journal of Immunology, 2004, 173, 7150-7160.	0.8	80
44	New Insights into the Mechanisms whereby Low Molecular Weight CCR5 Ligands Inhibit HIV-1 Infection. Journal of Biological Chemistry, 2011, 286, 4978-4990.	3.4	73
45	Functional Characterization of SDF-1 Proximal Promoter. Journal of Molecular Biology, 2005, 348, 43-62.	4.2	72
46	The CXCL12Î ³ Chemokine Displays Unprecedented Structural and Functional Properties that Make It a Paradigm of Chemoattractant Proteins. PLoS ONE, 2008, 3, e2543.	2.5	72
47	Activation of blood T lymphocytes down-regulates CXCR4 expression and interferes with propagation of X4 HIV strains. European Journal of Immunology, 1998, 28, 3192-3204.	2.9	71
48	Elastase Release by Transmigrating Neutrophils Deactivates Endothelial-bound SDF-1α and Attenuates Subsequent T Lymphocyte Transendothelial Migration. Journal of Experimental Medicine, 2004, 200, 713-724.	8.5	68
49	Appraising the Roles of CBLL1 and the Ubiquitin/Proteasome System for Flavivirus Entry and Replication. Journal of Virology, 2011, 85, 2980-2989.	3.4	67
50	Optimal Inhibition of X4 HIV Isolates by the CXC Chemokine Stromal Cell-derived Factor 1α Requires Interaction with Cell Surface Heparan Sulfate Proteoglycans. Journal of Biological Chemistry, 2001, 276, 26550-26558.	3.4	65
51	Relationships between glycosaminoglycan and receptor binding sites in chemokines—the CXCL12 example. Carbohydrate Research, 2008, 343, 2018-2023.	2.3	64
52	A Pivotal Role for CXCL12 Signaling in HPV-Mediated Transformation of Keratinocytes: Clues toÂUnderstanding HPV-Pathogenesis in WHIM Syndrome. Cell Host and Microbe, 2010, 8, 523-533.	11.0	64
53	G Protein-Dependent CCR5 Signaling Is Not Required for Efficient Infection of Primary T Lymphocytes and Macrophages by R5 Human Immunodeficiency Virus Type 1 Isolates. Journal of Virology, 2003, 77, 2550-2558.	3.4	61
54	HIV-1 exploits CCR5 conformational heterogeneity to escape inhibition by chemokines. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9475-9480.	7.1	61

#	Article	IF	CITATIONS
55	Homeostatic and Tissue Reparation Defaults in Mice Carrying Selective Genetic Invalidation of CXCL12/Proteoglycan Interactions. Circulation, 2012, 126, 1882-1895.	1.6	55
56	Inducible NF-κB Activation Is Permitted by Simultaneous Degradation of Nuclear IκBα. Journal of Biological Chemistry, 2000, 275, 15193-15199.	3.4	54
57	Opposite Effects of SDF-1 on Human Immunodeficiency Virus Type 1 Replication. Journal of Virology, 1999, 73, 3608-3615.	3.4	51
58	CXCL12 is displayed by rheumatoid endothelial cells through its basic amino-terminal motif on heparan sulfate proteoglycans. Arthritis Research and Therapy, 2006, 8, R43.	3.5	50
59	An Ectromelia Virus Protein That Interacts with Chemokines through Their Glycosaminoglycan Binding Domain. Journal of Virology, 2008, 82, 917-926.	3.4	50
60	Vaccine and Wild-Type Strains of Yellow Fever Virus Engage Distinct Entry Mechanisms and Differentially Stimulate Antiviral Immune Responses. MBio, 2016, 7, e01956-15.	4.1	50
61	Idiopathic CD4+ T-cell lymphocytopenia is associated with impaired membrane expression of the chemokine receptor CXCR4. Blood, 2010, 115, 3708-3717.	1.4	47
62	The approved pediatric drug suramin identified as a clinical candidate for the treatment of EV71 infection—suramin inhibits EV71 infection <i>in vitro</i> and <i>in vivo</i> . Emerging Microbes and Infections, 2014, 3, 1-9.	6.5	47
63	CCR5 adopts three homodimeric conformations that control cell surface delivery. Science Signaling, 2018, 11, .	3.6	39
64	The carboxy-terminus of lκBα determines susceptibility to degradation by the catalytic core of the proteasome. Oncogene, 1997, 15, 1841-1850.	5.9	35
65	Targeting Spare CC Chemokine Receptor 5 (CCR5) as a Principle to Inhibit HIV-1 Entry. Journal of Biological Chemistry, 2014, 289, 19042-19052.	3.4	34
66	CD4 and CCR5 Constitutively Interact at the Plasma Membrane of Living Cells. Journal of Biological Chemistry, 2006, 281, 37921-37929.	3.4	33
67	Complementary methods provide evidence for the expression of <scp>CXCR</scp> 7 on human <scp>B</scp> cells. Proteomics, 2012, 12, 1938-1948.	2.2	33
68	Essential role of immobilized chemokine CXCL12 in the regulation of the humoral immune response. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2319-2324.	7.1	33
69	SDF-1/CXCL12: A Chemokine in the Life Cycle of HIV. Frontiers in Immunology, 2015, 6, 256.	4.8	31
70	Heparan sulfate differentially controls CXCL12α- and CXCL12γ-mediated cell migration through differential presentation to their receptor CXCR4. Science Signaling, 2016, 9, ra107.	3.6	29
71	A single-residue change in the HIV-1 V3 loop associated with maraviroc resistance impairs CCR5 binding affinity while increasing replicative capacity. Retrovirology, 2015, 12, 50.	2.0	27
72	CCR5 structural plasticity shapes HIV-1 phenotypic properties. PLoS Pathogens, 2018, 14, e1007432.	4.7	27

#	Article	IF	CITATIONS
73	SDF-1/CXCL12 Production by Mature Dendritic Cells Inhibits the Propagation of X4-Tropic HIV-1 Isolates at the Dendritic Cell-T-Cell Infectious Synapse. Journal of Virology, 2010, 84, 4341-4351.	3.4	25
74	CXCL12 expression by healthy and malignant ovarian epithelial cells. BMC Cancer, 2011, 11, 97.	2.6	19
75	Low levels of co-receptor CCR5 are sufficient to permit HIV envelope-mediated fusion with resting CD4 T cells. Aids, 2002, 16, 2337-2340.	2.2	18
76	CXCL12Î ³ isoform is expressed on endothelial and dendritic cells in rheumatoid arthritis synovium and regulates T cell activation. Arthritis and Rheumatism, 2012, 64, 409-417.	6.7	16
77	The CXCL12gamma chemokine immobilized by heparan sulfate on stromal niche cells controls adhesion and mediates drug resistance in multiple myeloma. Journal of Hematology and Oncology, 2021, 14, 11.	17.0	15
78	Defective angiogenesis in CXCL12 mutant mice impairs skeletal muscle regeneration. Skeletal Muscle, 2019, 9, 25.	4.2	14
79	Mechanisms of HIV-1 evasion to the antiviral activity of chemokine CXCL12 indicate potential links with pathogenesis. PLoS Pathogens, 2021, 17, e1009526.	4.7	10
80	ls aberrant CD8+ T cell activation by hypertension associated with cardiac injury in severe cases of COVID-19?. Cellular and Molecular Immunology, 2020, 17, 675-676.	10.5	9
81	Rapid hematopoietic progenitor mobilization by sulfated colominic acid. Biochemical and Biophysical Research Communications, 2007, 355, 970-975.	2.1	7
82	Guidelines for cloning, expression, purification and functional characterization of primary HIV-1 envelope glycoproteins. Journal of Virological Methods, 2016, 236, 184-195.	2.1	6
83	Developmental Expression Profile of the CXCL12γ Isoform: Insights Into its Tissue‧pecific Role. Anatomical Record, 2009, 292, 891-901.	1.4	4