J-F Roch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10897091/publications.pdf

Version: 2024-02-01

186265 330143 5,061 41 28 37 citations h-index g-index papers 41 41 41 4643 docs citations times ranked citing authors all docs

#	ARTICLE	IF	CITATIONS
1	Direct measurement of interfacial Dzyaloshinskii-Woriya interaction in <mmi:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>X</mml:mi><mml:mo> </mml:mo> with a scanning NV magnetometer<mml:math< td=""><td><td>mrow><mm< td=""></mm<></td></td></mml:math<></mml:mrow></mmi:math>	<td>mrow><mm< td=""></mm<></td>	mrow> <mm< td=""></mm<>

#	Article	IF	CITATIONS
19	Electron spin resonance detected by a superconducting qubit. Physical Review B, 2012, 86, .	3.2	35
20	Nanoscale magnetic field mapping with a single spin scanning probe magnetometer. Applied Physics Letters, 2012, 100, .	3.3	177
21	Avoiding power broadening in optically detected magnetic resonance of single NV defects for enhanced dc magnetic field sensitivity. Physical Review B, 2011, 84, .	3.2	307
22	Engineered arrays of nitrogen-vacancy color centers in diamond based on implantation of CN ^{â^'} molecules through nanoapertures. New Journal of Physics, 2011, 13, 025014.	2.9	75
23	Hybrid Quantum Circuit with a Superconducting Qubit Coupled to a Spin Ensemble. Physical Review Letters, 2011, 107, 220501.	7.8	335
24	Surface-induced charge state conversion of nitrogen-vacancy defects in nanodiamonds. Physical Review B, 2010, 82, .	3.2	233
25	Efficient production of NV colour centres in nanodiamonds using high-energy electron irradiation. Journal of Luminescence, 2010, 130, 1655-1658.	3.1	46
26	Strong Coupling of a Spin Ensemble to a Superconducting Resonator. Physical Review Letters, 2010, 105, 140502.	7.8	541
27	Illustration of quantum complementarity using single photons interfering on a grating. New Journal of Physics, 2008, 10, 123009.	2.9	28
28	Nonclassical photon statistics in a single nickel–nitrogen diamond color center photoluminescence at room temperature. Journal of Modern Optics, 2008, 55, 2893-2901.	1.3	6
29	Room temperature triggered single-photon source in the near infrared. New Journal of Physics, 2007, 9, 434-434.	2.9	86
30	Experimental Realization of Wheeler's Delayed-Choice Gedanken Experiment. Science, 2007, 315, 966-968.	12.6	422
31	Wheeler's delayed-choice thought experiment: Experimental realization and theoretical analysis. Annales De Physique, 2007, 32, 195-197.	0.2	0
32	Triggered single-photon source based on photoluminescence of single nickel-related colour centres in CVD-grown nanodiamonds. Annales De Physique, 2007, 32, 159-161.	0.2	0
33	Intensity noise measurement of strongly attenuated laser diode pulses in the time domain. EPJ Applied Physics, 2006, 35, 117-121.	0.7	1
34	Single-photon emission in the near infrared from diamond colour centre. Journal of Luminescence, 2006, 119-120, 19-23.	3.1	18
35	Photoluminescence of single colour defects in 50nm diamond nanocrystals. Physica B: Condensed Matter, 2006, 376-377, 926-929.	2.7	69
36	Diamond-Based Single-photon Emission in the Near Infrared. , 2006, , .		1

J-F Roch

#	Article	IF	CITATION
37	Single-photon wavefront-splitting interference. European Physical Journal D, 2005, 35, 561-565.	1.3	58
38	Experimental open-air quantum key distribution with a single-photon source. New Journal of Physics, 2004, 6, 92-92.	2.9	99
39	Direct Measurement of the Photon Statistics of a Triggered Single Photon Source. Physical Review Letters, 2002, 89, 093601.	7.8	81
40	Quantum non-demolition measurements using cold atoms in an optical cavity. Journal of Modern Optics, 1997, 44, 1967-1984.	1.3	0
41	Quantum Nondemolition Measurements using Cold Trapped Atoms. Physical Review Letters, 1997, 78, 634-637.	7.8	122