List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10892808/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 2: Epidemiology, clinical presentation, radiological and laboratory features, treatment responses, and long-term outcome. Journal of Neuroinflammation, 2016, 13, 280.	7.2	686
2	MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 1: Frequency, syndrome specificity, influence of disease activity, long-term course, association with AQP4-IgG, and origin. Journal of Neuroinflammation, 2016, 13, 279.	7.2	351
3	The APOSTEL recommendations for reporting quantitative optical coherence tomography studies. Neurology, 2016, 86, 2303-2309.	1.1	331
4	Retinal thickness measured with optical coherence tomography and risk of disability worsening in multiple sclerosis: a cohort study. Lancet Neurology, The, 2016, 15, 574-584.	10.2	266
5	MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 4: Afferent visual system damage after optic neuritis in MOG-IgG-seropositive versus AQP4-IgG-seropositive patients. Journal of Neuroinflammation, 2016, 13, 282.	7.2	217
6	MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 3: Brainstem involvement - frequency, presentation and outcome. Journal of Neuroinflammation, 2016, 13, 281.	7.2	202
7	Accuracy and Reliability of the Kinect Version 2 for Clinical Measurement of Motor Function. PLoS ONE, 2016, 11, e0166532.	2.5	183
8	Functional and structural brain changes in anti–Nâ€methylâ€Dâ€aspartate receptor encephalitis. Annals of Neurology, 2013, 74, 284-296.	5.3	167
9	Optical Coherence Tomography Reveals Distinct Patterns of Retinal Damage in Neuromyelitis Optica and Multiple Sclerosis. PLoS ONE, 2013, 8, e66151.	2.5	162
10	Retinal ganglion cell and inner plexiform layer thinning in clinically isolated syndrome. Multiple Sclerosis Journal, 2013, 19, 1887-1895.	3.0	141
11	Microstructural visual system changes in AQP4-antibody–seropositive NMOSD. Neurology: Neuroimmunology and NeuroInflammation, 2017, 4, e334.	6.0	128
12	Association of Retinal and Macular Damage with Brain Atrophy in Multiple Sclerosis. PLoS ONE, 2011, 6, e18132.	2.5	127
13	Retinal Damage in Multiple Sclerosis Disease Subtypes Measured by High-Resolution Optical Coherence Tomography. Multiple Sclerosis International, 2012, 2012, 1-10.	0.8	111
14	Patterns of retinal nerve fiber layer loss in multiple sclerosis patients with or without optic neuritis and glaucoma patients. Clinical Neurology and Neurosurgery, 2010, 112, 647-652.	1.4	107
15	Optimal intereye difference thresholds by optical coherence tomography in multiple sclerosis: An international study. Annals of Neurology, 2019, 85, 618-629.	5.3	104
16	Optic Neuritis Is Associated with Inner Nuclear Layer Thickening and Microcystic Macular Edema Independently of Multiple Sclerosis. PLoS ONE, 2013, 8, e71145.	2.5	102
17	Optic neuritis interferes with optical coherence tomography and magnetic resonance imaging correlations. Multiple Sclerosis Journal, 2013, 19, 443-450.	3.0	100
18	Retinal ganglion cell loss in neuromyelitis optica: a longitudinal study. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 1259-1265.	1.9	100

#	Article	IF	CITATIONS
19	Expanding Two-Photon Intravital Microscopy to the Infrared by Means of Optical Parametric Oscillator. Biophysical Journal, 2010, 98, 715-723.	0.5	96
20	APOSTEL 2.0 Recommendations for Reporting Quantitative Optical Coherence Tomography Studies. Neurology, 2021, 97, 68-79.	1.1	96
21	Uncovering convolutional neural network decisions for diagnosing multiple sclerosis on conventional MRI using layer-wise relevance propagation. NeuroImage: Clinical, 2019, 24, 102003.	2.7	93
22	Severe structural and functional visual system damage leads to profound loss of vision-related quality of life in patients with neuromyelitis optica spectrum disorders. Multiple Sclerosis and Related Disorders, 2017, 11, 45-50.	2.0	89
23	Correlation of self-assessed fatigue and alertness in multiple sclerosis. Multiple Sclerosis Journal, 2010, 16, 1134-1140.	3.0	88
24	Photoreceptor layer thinning in idiopathic Parkinson's disease. Movement Disorders, 2014, 29, 1163-1170.	3.9	84
25	Optic radiation damage in multiple sclerosis is associated with visual dysfunction and retinal thinning – an ultrahigh-field MR pilot study. European Radiology, 2015, 25, 122-131.	4.5	84
26	Differential immune cell dynamics in the CNS cause CD4+ T cell compartmentalization. Brain, 2009, 132, 1247-1258.	7.6	78
27	Metabolic Changes in the Visual Cortex Are Linked to Retinal Nerve Fiber Layer Thinning in Multiple Sclerosis. PLoS ONE, 2011, 6, e18019.	2.5	76
28	Multicenter reliability of semiautomatic retinal layer segmentation using OCT. Neurology: Neuroimmunology and NeuroInflammation, 2018, 5, e449.	6.0	76
29	Reliability of Intra-Retinal Layer Thickness Estimates. PLoS ONE, 2015, 10, e0137316.	2.5	75
30	Optical coherence tomography in neuromyelitis optica spectrum disorders: potential advantages for individualized monitoring of progression and therapy. EPMA Journal, 2018, 9, 21-33.	6.1	75
31	Association of Retinal Ganglion Cell Layer Thickness With Future Disease Activity in Patients With Clinically Isolated Syndrome. JAMA Neurology, 2018, 75, 1071.	9.0	72
32	Impairment of contrast visual acuity as a functional correlate of retinal nerve fibre layer thinning and total macular volume reduction in multiple sclerosis. British Journal of Ophthalmology, 2012, 96, 62-67.	3.9	68
33	Optic Nerve Head Quantification in Idiopathic Intracranial Hypertension by Spectral Domain OCT. PLoS ONE, 2012, 7, e36965.	2.5	68
34	Patients with multiple sclerosis demonstrate reduced subbasal corneal nerve fibre density. Multiple Sclerosis Journal, 2017, 23, 1847-1853.	3.0	65
35	Optical coherence tomography in myelin-oligodendrocyte-glycoprotein antibody-seropositive patients: a longitudinal study. Journal of Neuroinflammation, 2019, 16, 154.	7.2	61
36	Accuracy and repeatability of two methods of gait analysis – GaitRite™ und Mobility Lab™ – in subjects with cerebellar ataxia. Gait and Posture, 2016, 48, 194-201.	1.4	59

#	Article	IF	CITATIONS
37	Temporal Retinal Nerve Fiber Loss in Patients with Spinocerebellar Ataxia Type 1. PLoS ONE, 2011, 6, e23024.	2.5	57
38	Optical coherence tomography for the diagnosis and monitoring of idiopathic intracranial hypertension. Journal of Neurology, 2017, 264, 1370-1380.	3.6	55
39	Safety and preliminary efficacy of deep transcranial magnetic stimulation in MS-related fatigue. Neurology: Neuroimmunology and NeuroInflammation, 2018, 5, e423.	6.0	52
40	Patterns of Retinal Damage Facilitate Differential Diagnosis between Susac Syndrome and MS. PLoS ONE, 2012, 7, e38741.	2.5	52
41	Altered fovea in AQP4-IgG–seropositive neuromyelitis optica spectrum disorders. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, .	6.0	50
42	Dynamics of saccade parameters in multiple sclerosis patients with fatigue. Journal of Neurology, 2012, 259, 2656-2663.	3.6	48
43	Synergistic Strategy for Multicolor Two-photon Microscopy: Application to the Analysis of Germinal Center Reactions In Vivo. Scientific Reports, 2017, 7, 7101.	3.3	48
44	Dynamic formation of macular microcysts independent of vitreous traction changes. Neurology, 2014, 83, 73-77.	1.1	47
45	Using perceptive computing in multiple sclerosis - the Short Maximum Speed Walk test. Journal of NeuroEngineering and Rehabilitation, 2014, 11, 89.	4.6	47
46	Normal volumes and microstructural integrity of deep gray matter structures in AQP4+ NMOSD. Neurology: Neuroimmunology and NeuroInflammation, 2016, 3, e229.	6.0	47
47	Spinal cord lesions and atrophy in NMOSD with AQP4-IgG and MOG-IgG associated autoimmunity. Multiple Sclerosis Journal, 2019, 25, 1926-1936.	3.0	47
48	Retinal Optical Coherence Tomography in Neuromyelitis Optica. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .	6.0	47
49	Relations of low contrast visual acuity, quality of life and multiple sclerosis functional composite: a cross-sectional analysis. BMC Neurology, 2014, 14, 31.	1.8	46
50	Optical coherence tomography in acute optic neuritis: A population-based study. Acta Neurologica Scandinavica, 2018, 138, 566-573.	2.1	44
51	Novel uses of retinal imaging with optical coherence tomography in multiple sclerosis. Expert Review of Neurotherapeutics, 2019, 19, 31-43.	2.8	44
52	Serum GFAP and NfL as disease severity and prognostic biomarkers in patients with aquaporin-4 antibody-positive neuromyelitis optica spectrum disorder. Journal of Neuroinflammation, 2021, 18, 105.	7.2	44
53	Patient perspectives on neuromyelitis optica spectrum disorders: Data from the PatientsLikeMe online community. Multiple Sclerosis and Related Disorders, 2017, 17, 116-122.	2.0	43
54	Intrathecal IgM production is a strong risk factor for early conversion to multiple sclerosis. Neurology, 2019, 93, e1439-e1451.	1.1	43

#	Article	IF	CITATIONS
55	New Insights into Adaptive Immunity in Chronic Neuroinflammation. Advances in Immunology, 2007, 96, 1-40.	2.2	42
56	In vivo imaging of lymphocytes in the CNS reveals different behaviour of naÃ ⁻ ve T cells in health and autoimmunity. Journal of Neuroinflammation, 2011, 8, 131.	7.2	42
57	Cognitive Impairment in Neuromyelitis Optica Spectrum Disorders: A Review of Clinical and Neuroradiological Features. Frontiers in Neurology, 2019, 10, 608.	2.4	42
58	Monitoring the Course of MS With Optical Coherence Tomography. Current Treatment Options in Neurology, 2017, 19, 15.	1.8	40
59	Pain in AQP4-lgG-positive and MOG-lgG-positive neuromyelitis optica spectrum disorders. Multiple Sclerosis Journal - Experimental, Translational and Clinical, 2018, 4, 205521731879668.	1.0	40
60	Comparison of probabilistic tractography and tract-based spatial statistics for assessing optic radiation damage in patients with autoimmune inflammatory disorders of the central nervous system. NeuroImage: Clinical, 2018, 19, 538-550.	2.7	40
61	Comparison of Standard Versus Wide-Field Composite Images of the Corneal Subbasal Layer by In Vivo Confocal Microscopy. , 2015, 56, 5801.		39
62	Validity of visual perceptive computing for static posturography in patients with multiple sclerosis. Multiple Sclerosis Journal, 2016, 22, 1596-1606.	3.0	39
63	Anatomical Wiring and Functional Networking Changes in the Visual System Following Optic Neuritis. JAMA Neurology, 2018, 75, 287.	9.0	39
64	Low contrast visual acuity testing is associated with cognitive performance in multiple sclerosis: a cross-sectional pilot study. BMC Neurology, 2013, 13, 167.	1.8	37
65	Retinal nerve fibre layer thickness correlates with brain white matter damage in multiple sclerosis: A combined optical coherence tomography and diffusion tensor imaging study. Multiple Sclerosis Journal, 2014, 20, 1904-1907.	3.0	36
66	Longitudinal optic neuritis-unrelated visual evoked potential changes in NMO spectrum disorders. Neurology, 2020, 94, e407-e418.	1.1	36
67	Diffusion tensor imaging for multilevel assessment of the visual pathway: possibilities for personalized outcome prediction in autoimmune disorders of the central nervous system. EPMA Journal, 2017, 8, 279-294.	6.1	35
68	Association of Visual Impairment in Neuromyelitis Optica Spectrum Disorder With Visual Network Reorganization. JAMA Neurology, 2018, 75, 296.	9.0	34
69	Retinal inner nuclear layer volume reflects inflammatory disease activity in multiple sclerosis; a longitudinal OCT study. Multiple Sclerosis Journal - Experimental, Translational and Clinical, 2019, 5, 205521731987158.	1.0	34
70	Characterizing the phenotype of multiple sclerosis–associated depression in comparison with idiopathic major depression. Multiple Sclerosis Journal, 2016, 22, 1476-1484.	3.0	33
71	Artificial intelligence extension of the OSCARâ€ŀB criteria. Annals of Clinical and Translational Neurology, 2021, 8, 1528-1542.	3.7	33
72	Standardization of T1w/T2w Ratio Improves Detection of Tissue Damage in Multiple Sclerosis. Frontiers in Neurology, 2019, 10, 334.	2.4	31

#	Article	IF	CITATIONS
73	Frequent retinal ganglion cell damage after acute optic neuritis. Multiple Sclerosis and Related Disorders, 2018, 22, 141-147.	2.0	30
74	Stress-induced brain activity, brain atrophy, and clinical disability in multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13444-13449.	7.1	29
75	Damage of the lateral geniculate nucleus in MS. Neurology, 2019, 92, e2240-e2249.	1.1	29
76	Protective effects of 4-aminopyridine in experimental optic neuritis and multiple sclerosis. Brain, 2020, 143, 1127-1142.	7.6	29
77	Increased Serum Neurofilament Light and Thin Ganglion Cell–Inner Plexiform Layer Are Additive Risk Factors for Disease Activity in Early Multiple Sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .	6.0	29
78	Epstein-Barr virus antibodies in serum and DNA load in saliva are not associated with radiological or clinical disease activity in patients with early multiple sclerosis. PLoS ONE, 2017, 12, e0175279.	2.5	29
79	Maximum walking speed in multiple sclerosis assessed with visual perceptive computing. PLoS ONE, 2017, 12, e0189281.	2.5	29
80	RETINAL LESION EVOLUTION IN SUSAC SYNDROME. Retina, 2016, 36, 366-374.	1.7	25
81	Retinal pathology in idiopathic moyamoya angiopathy detected by optical coherence tomography. Neurology, 2015, 85, 521-527.	1.1	24
82	No Evidence for Retinal Damage Evolving from Reduced Retinal Blood Flow in Carotid Artery Disease. BioMed Research International, 2015, 2015, 1-8.	1.9	21
83	Visual dysfunction, but not retinal thinning, following anti-NMDA receptor encephalitis. Neurology: Neuroimmunology and NeuroInflammation, 2016, 3, e198.	6.0	21
84	Brain activity, regional gray matter loss, and decision-making in multiple sclerosis. Multiple Sclerosis Journal, 2018, 24, 1163-1173.	3.0	21
85	Longitudinal Intravital Imaging of the Retina Reveals Long-term Dynamics of Immune Infiltration and Its Effects on the Clial Network in Experimental Autoimmune Uveoretinitis, without Evident Signs of Neuronal Dysfunction in the Ganglion Cell Layer. Frontiers in Immunology, 2016, 7, 642.	4.8	20
86	Longitudinal Retinal Changes in <scp>MOGAD</scp> . Annals of Neurology, 2022, 92, 476-485.	5.3	20
87	Contribution of blood vessels to retinal nerve fiber layer thickness in NMOSD. Neurology: Neuroimmunology and NeuroInflammation, 2017, 4, e338.	6.0	19
88	Optical coherence tomography for retinal imaging in multiple sclerosis. Degenerative Neurological and Neuromuscular Disease, 2014, 4, 153.	1.3	18
89	Association Between Fatigue and Motor Exertion in Patients With Multiple Sclerosis—a Prospective Study. Frontiers in Neurology, 2020, 11, 208.	2.4	18
90	CuBe: parametric modeling of 3D foveal shape using cubic Bézier. Biomedical Optics Express, 2017, 8, 4181.	2.9	16

#	Article	IF	CITATIONS
91	The International Multiple Sclerosis Visual System Consortium: Advancing Visual System Research in Multiple Sclerosis. Journal of Neuro-Ophthalmology, 2018, 38, 494-501.	0.8	15
92	Temporal visual resolution and disease severity in MS. Neurology: Neuroimmunology and NeuroInflammation, 2018, 5, e492.	6.0	15
93	Imaging markers of disability in aquaporin-4 immunoglobulin G seropositive neuromyelitis optica: a graph theory study. Brain Communications, 2019, 1, fcz026.	3.3	15
94	Contactless recording of sleep apnea and periodic leg movements by nocturnal 3-D-video and subsequent visual perceptive computing. Scientific Reports, 2019, 9, 16812.	3.3	15
95	Metabolic Evidence for Cerebral Neurodegeneration in Spinocerebellar Ataxia Type 1. Cerebellum, 2014, 13, 199-206.	2.5	14
96	Axonal damage in papilledema linked to idiopathic intracranial hypertension as revealed by multifocal visual evoked potentials. Clinical Neurophysiology, 2015, 126, 2040-2041.	1.5	14
97	MRI Markers and Functional Performance in Patients With CIS and MS: A Cross-Sectional Study. Frontiers in Neurology, 2018, 9, 718.	2.4	14
98	Differences in Advanced Magnetic Resonance Imaging in MOG-IgG and AQP4-IgG Seropositive Neuromyelitis Optica Spectrum Disorders: A Comparative Study. Frontiers in Neurology, 2020, 11, 499910.	2.4	14
99	Spinocerebellar ataxia type 14: refining clinicogenetic diagnosis in a rare adultâ€onset disorder. Annals of Clinical and Translational Neurology, 2021, 8, 774-789.	3.7	13
100	Astrocytic outer retinal layer thinning is not a feature in AQP4-IgG seropositive neuromyelitis optica spectrum disorders. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, 188-195.	1.9	13
101	Vessel Labeling in Combined Confocal Scanning Laser Ophthalmoscopy and Optical Coherence Tomography Images: Criteria for Blood Vessel Discrimination. PLoS ONE, 2014, 9, e102034.	2.5	12
102	Effects of Deep Repetitive Transcranial Magnetic Stimulation on Brain-Derived Neurotrophic Factor Serum Concentration in Healthy Volunteers. Neuropsychobiology, 2014, 69, 112-119.	1.9	12
103	Transdiagnostic hippocampal damage patterns in neuroimmunological disorders. NeuroImage: Clinical, 2020, 28, 102515.	2.7	11
104	Active contour method for ILM segmentation in ONH volume scans in retinal OCT. Biomedical Optics Express, 2018, 9, 6497.	2.9	11
105	Temporal retinal nerve fibre layer thinning in cluster headache patients detected by optical coherence tomography. Cephalalgia, 2015, 35, 946-958.	3.9	10
106	Blunted neural and psychological stress processing predicts future grey matter atrophy in multiple sclerosis. Neurobiology of Stress, 2020, 13, 100244.	4.0	10
107	Cohort profile: a collaborative multicentre study of retinal optical coherence tomography in 539 patients with neuromyelitis optica spectrum disorders (CROCTINO). BMJ Open, 2020, 10, e035397.	1.9	10
108	Fingolimod after a first unilateral episode of acute optic neuritis (MOVING) – preliminary results from a randomized, rater-blind, active-controlled, phase 2 trial. BMC Neurology, 2020, 20, 75.	1.8	10

#	Article	IF	CITATIONS
109	Optic Nerve Head Volumetry by Optical Coherence Tomography in Papilledema Related to Idiopathic Intracranial Hypertension. Translational Vision Science and Technology, 2020, 9, 24.	2.2	10
110	Cross-Recognition of a Myelin Peptide by CD8 ⁺ T Cells in the CNS Is Not Sufficient to Promote Neuronal Damage. Journal of Neuroscience, 2015, 35, 4837-4850.	3.6	9
111	Whole-body positional manipulators for ocular imaging of anaesthetised mice and rats: a do-it-yourself guide. BMJ Open Ophthalmology, 2016, 1, e000008.	1.6	9
112	Visual system damage and network maladaptation are associated with cognitive performance in neuromyelitis optica spectrum disorders Multiple Sclerosis and Related Disorders, 2020, 45, 102406.	2.0	9
113	Optic chiasm measurements may be useful markers of anterior optic pathway degeneration in neuromyelitis optica spectrum disorders. European Radiology, 2020, 30, 5048-5058.	4.5	9
114	Lateral geniculate nucleus volume changes after optic neuritis in neuromyelitis optica: A longitudinal study. NeuroImage: Clinical, 2021, 30, 102608.	2.7	9
115	Self-perception and determinants of color vision in Parkinson's disease. Journal of Neural Transmission, 2018, 125, 145-152.	2.8	8
116	Functionally Relevant Maculopathy and Optic Atrophy in Spinocerebellar Ataxia Type 1. Movement Disorders Clinical Practice, 2020, 7, 502-508.	1.5	7
117	Retinal Thickness Analysis in Progressive Multiple Sclerosis Patients Treated With Epigallocatechin Gallate: Optical Coherence Tomography Results From the SUPREMES Study. Frontiers in Neurology, 2021, 12, 615790.	2.4	7
118	Neural Processes of Psychological Stress and Relaxation Predict the Future Evolution of Quality of Life in Multiple Sclerosis. Frontiers in Neurology, 2021, 12, 753107.	2.4	7
119	Central stress processing, T-cell responsivity to stress hormones and disease severity in multiple sclerosis. Brain Communications, 2022, 4, fcac086.	3.3	7
120	Distribution of Retinal Layer Atrophy in Patients With Parkinson Disease and Association With Disease Severity and Duration. American Journal of Ophthalmology, 2014, 158, 845.	3.3	6
121	AQP4-IgG autoimmunity in Japan and Germany: Differences in clinical profiles and prognosis in seropositive neuromyelitis optica spectrum disorders. Multiple Sclerosis Journal - Experimental, Translational and Clinical, 2021, 7, 205521732110068.	1.0	6
122	Afferent Visual Pathway Affection in Patients with PMP22 Deletion-Related Hereditary Neuropathy with Liability to Pressure Palsies. PLoS ONE, 2016, 11, e0164617.	2.5	6
123	Neural mechanisms of perceptual decision-making and their link to neuropsychiatric symptoms in multiple sclerosis. Multiple Sclerosis and Related Disorders, 2019, 33, 139-145.	2.0	4
124	Cultural bias in motor function patterns: Potential relevance for predictive, preventive, and personalized medicine. EPMA Journal, 2021, 12, 91-101.	6.1	4
125	Altered Coupling of Psychological Relaxation and Regional Volume of Brain Reward Areas in Multiple Sclerosis. Frontiers in Neurology, 2020, 11, 568850.	2.4	3
126	Investigation of Visual System Involvement in Spinocerebellar Ataxia Type 14. Cerebellum, 2020, 19, 469-482.	2.5	3

#	Article	IF	CITATIONS
127	Impaired motion perception is associated with functional and structural visual pathway damage in multiple sclerosis and neuromyelitis optica spectrum disorders. Multiple Sclerosis Journal, 2022, 28, 757-767.	3.0	3
128	Reply to: Photoreceptor layer thinning in Parkinsonian syndromes. Movement Disorders, 2014, 29, 1223-1224.	3.9	2
129	Automatic quality evaluation as assessment standard for optical coherence tomography. , 2019, , .		2
130	Re: Garcia-Martin etÂal.: Retinal layer segmentation in patients with multiple sclerosis using spectral domain optical coherence tomography (Ophthalmology 2014;121:573–9). Ophthalmology, 2014, 121, e63.	5.2	1
131	A novel investigation method for axonal damage in neuromyelitis optica spectrum disorder: In vivo corneal confocal microscopy. Multiple Sclerosis Journal - Experimental, Translational and Clinical, 2021, 7, 205521732199806.	1.0	1
132	Reply: Photoreceptor layer thinning is not specific for Parkinson's disease. Movement Disorders, 2014, 29, 1332-1332.	3.9	0
133	Neurochemical Differences in Spinocerebellar Ataxia Type 14 and 1. Cerebellum, 2021, 20, 169-178.	2.5	0
134	Progressive Multiple Sclerosis (SP and PP MS). , 2016, , 135-150.		0
135	The APOSTEL Recommendations. , 2020, , 33-39.		0