
Steven L Chown

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10889702/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thermal tolerance, climatic variability and latitude. Proceedings of the Royal Society B: Biological Sciences, 2000, 267, 739-745.	2.6	895
2	Heat freezes niche evolution. Ecology Letters, 2013, 16, 1206-1219.	6.4	708
3	Biological invasions in the Antarctic: extent, impacts and implications. Biological Reviews, 2005, 80, 45-72.	10.4	577
4	Body size variation in insects: a macroecological perspective. Biological Reviews, 2010, 85, 139-169.	10.4	534
5	Upper thermal limits in terrestrial ectotherms: how constrained are they?. Functional Ecology, 2013, 27, 934-949.	3.6	519
6	Physiological Diversity in Insects: Ecological and Evolutionary Contexts. Advances in Insect Physiology, 2006, 33, 50-152.	2.7	446
7	Climatic Predictors of Temperature Performance Curve Parameters in Ectotherms Imply Complex Responses to Climate Change. American Naturalist, 2011, 177, 738-751.	2.1	384
8	Critical thermal limits depend on methodological context. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 2935-2943.	2.6	380
9	Insects at low temperatures: an ecological perspective. Trends in Ecology and Evolution, 2003, 18, 257-262.	8.7	370
10	Ecologically relevant measures of tolerance to potentially lethal temperatures. Journal of Experimental Biology, 2011, 214, 3713-3725.	1.7	352
11	Indirect effects of invasive species removal devastate World Heritage Island. Journal of Applied Ecology, 2009, 46, 73-81.	4.0	350
12	What is conservation physiology? Perspectives on an increasingly integrated and essential science. , 2013, 1, cot001-cot001.		350
13	Biodiversity Assessment and Conservation Strategies. Science, 1998, 279, 2106-2108.	12.6	300
14	Exploring links between physiology and ecology at macro-scales: the role of respiratory metabolism in insects. Biological Reviews, 1999, 74, 87-120.	10.4	300
15	Macrophysiology: A Conceptual Reunification. American Naturalist, 2009, 174, 595-612.	2.1	298
16	Water loss in insects: An environmental change perspective. Journal of Insect Physiology, 2011, 57, 1070-1084.	2.0	296
17	Continent-wide risk assessment for the establishment of nonindigenous species in Antarctica. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4938-4943.	7.1	292
18	Handbook of protocols for standardized measurement of terrestrial invertebrate functional traits. Functional Ecology, 2017, 31, 558-567.	3.6	290

2

#	Article	IF	CITATIONS
19	The spatial structure of Antarctic biodiversity. Ecological Monographs, 2014, 84, 203-244.	5.4	286
20	Ecogeographical rules: elements of a synthesis. Journal of Biogeography, 2008, 35, 483-500.	3.0	284
21	Phenotypic variance, plasticity and heritability estimates of critical thermal limits depend on methodological context. Functional Ecology, 2009, 23, 133-140.	3.6	271
22	Vulnerability of South African animal taxa to climate change. Global Change Biology, 2002, 8, 679-693.	9.5	259
23	Phenotypic plasticity mediates climate change responses among invasive and indigenous arthropods. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 2531-2537.	2.6	259
24	Areas, cradles and museums: the latitudinal gradient in species richness. Trends in Ecology and Evolution, 2000, 15, 311-315.	8.7	240
25	Elevation and Climatic Tolerance: A Test Using Dung Beetles. Oikos, 1999, 86, 584.	2.7	222
26	Life at the front: history, ecology and change on southern ocean islands. Trends in Ecology and Evolution, 1999, 14, 472-477.	8.7	211
27	Biological invasions, climate change and genomics. Evolutionary Applications, 2015, 8, 23-46.	3.1	209
28	Physiological variation in insects: hierarchical levels and implications. Journal of Insect Physiology, 2001, 47, 649-660.	2.0	207
29	Conservation biogeography of the <scp>A</scp> ntarctic. Diversity and Distributions, 2012, 18, 726-741.	4.1	199
30	Macrophysiology for a changing world. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 1469-1478.	2.6	194
31	Polar research: Six priorities for Antarctic science. Nature, 2014, 512, 23-25.	27.8	189
32	Spatial and temporal variability across life's hierarchies in the terrestrial Antarctic. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362, 2307-2331.	4.0	186
33	Climatic variability and the evolution of insect freeze tolerance. Biological Reviews, 2003, 78, 181-195.	10.4	183
34	Altitudinal body size clines: latitudinal effects associated with changing seasonality. Ecography, 2003, 26, 445-455.	4.5	160
35	Upper thermal tolerance and oxygen limitation in terrestrial arthropods. Journal of Experimental Biology, 2004, 207, 2361-2370.	1.7	155
36	Lizard thermal trait variation at multiple scales: a review. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2014, 184, 5-21.	1.5	154

#	Article	IF	CITATIONS
37	Revisiting water loss in insects: a large scale view. Journal of Insect Physiology, 2001, 47, 1377-1388.	2.0	147
38	ENERGY, SPECIES RICHNESS, AND HUMAN POPULATION SIZE: CONSERVATION IMPLICATIONS AT A NATIONAL SCALE. , 2003, 13, 1233-1241.		146
39	Insect Rateâ€Temperature Relationships: Environmental Variation and the Metabolic Theory of Ecology. American Naturalist, 2009, 174, 819-835.	2.1	144
40	Why Rapoport's Rule Does Not Generalise. Oikos, 1999, 84, 309.	2.7	142
41	Resistance to temperature extremes in sub-Antarctic weevils: interspecific variation, population differentiation and acclimation. Biological Journal of the Linnean Society, 2003, 78, 401-414.	1.6	137
42	Non-indigenous microorganisms in the Antarctic: assessing the risks. Trends in Microbiology, 2011, 19, 540-548.	7.7	136
43	Thermal tolerance in a south-east African population of the tsetse fly Glossina pallidipes (Diptera,) Tj ETQq1 1 0.7 54, 114-127.	784314 rg 2.0	BT /Overlock 131
44	Hemispheric Asymmetries in Biodiversity—A Serious Matter for Ecology. PLoS Biology, 2004, 2, e406.	5.6	129
45	PHENOTYPIC PLASTICITY AND GEOGRAPHIC VARIATION IN THERMAL TOLERANCE AND WATER LOSS OF THE TSETSE GLOSSINA PALLIDIPES (DIPTERA: GLOSSINIDAE): IMPLICATIONS FOR DISTRIBUTION MODELLING. American Journal of Tropical Medicine and Hygiene, 2006, 74, 786-794.	1.4	126
46	Testing the Beneficial Acclimation Hypothesis and Its Alternatives for Locomotor Performance. American Naturalist, 2006, 168, 630-644.	2.1	117
47	Critical thermal limits, temperature tolerance and water balance of a sub-Antarctic caterpillar, Pringleophaga marioni (Lepidoptera: Tineidae). Journal of Insect Physiology, 1997, 43, 685-694.	2.0	112
48	The relative contributions of developmental plasticity and adult acclimation to physiological variation in the tsetse fly, Glossina pallidipes (Diptera, Glossinidae). Journal of Experimental Biology, 2006, 209, 1064-1073.	1.7	105
49	Rates of species introduction to a remote oceanic island. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 1091-1098.	2.6	103
50	Rising temperatures and changing rainfall patterns in South Africa's national parks. International Journal of Climatology, 2016, 36, 706-721.	3.5	102
51	Oxygen limitation and thermal tolerance in two terrestrial arthropod species. Journal of Experimental Biology, 2010, 213, 2209-2218.	1.7	101
52	Breaching the dispersal barrier to invasion: quantification and management. Ecological Applications, 2009, 19, 1944-1959.	3.8	99
53	Ant assemblages have darker and larger members in cold environments. Global Ecology and Biogeography, 2016, 25, 1489-1499.	5.8	95
54	Evolutionary responses of discontinuous gas exchange in insects. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8357-8361.	7.1	92

#	Article	IF	CITATIONS
55	Acclimation effects on thermal tolerances of springtails from sub-Antarctic Marion Island: Indigenous and invasive species. Journal of Insect Physiology, 2007, 53, 113-125.	2.0	91
56	Antarctica's Protected Areas Are Inadequate, Unrepresentative, and at Risk. PLoS Biology, 2014, 12, e1001888.	5.6	88
57	A predicted niche shift corresponds with increased thermal resistance in an invasive mite, <i><scp>H</scp>alotydeus destructor</i> . Global Ecology and Biogeography, 2013, 22, 942-951.	5.8	87
58	Stable and fluctuating temperature effects on the development rate and survival of two malaria vectors, Anopheles arabiensis and Anopheles funestus. Parasites and Vectors, 2013, 6, 104.	2.5	84
59	The effects of acclimation on thermal tolerance, desiccation resistance and metabolic rate in Chirodica chalcoptera (Coleoptera: Chrysomelidae). Journal of Insect Physiology, 2005, 51, 1013-1023.	2.0	82
60	Diurnal variation in supercooling points of three species of Collembola from Cape Hallett, Antarctica. Journal of Insect Physiology, 2003, 49, 1049-1061.	2.0	81
61	Trait-based approaches to conservation physiology: forecasting environmental change risks from the bottom up. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 1615-1627.	4.0	81
62	Time-course for attainment and reversal of acclimation to constant temperature in two Ceratitis species. Journal of Thermal Biology, 2011, 36, 479-485.	2.5	78
63	Repeatability of standard metabolic rate and gas exchange characteristics in a highly variable cockroach, Perisphaeria sp Journal of Experimental Biology, 2003, 206, 4565-4574.	1.7	77
64	Beneficial acclimation and the Bogert effect. Ecology Letters, 2008, 11, 1027-1036.	6.4	77
65	Macrophysiology – progress and prospects. Functional Ecology, 2016, 30, 330-344.	3.6	77
66	Taxonomic homogenization and differentiation across Southern Ocean Islands differ among insects and vascular plants. Journal of Biogeography, 2010, 37, 217-228.	3.0	76
67	Thermal biology, population fluctuations and implications of temperature extremes for the management of two globally significant insect pests. Journal of Insect Physiology, 2013, 59, 1199-1211.	2.0	76
68	Barriers to globally invasive species are weakening across the Antarctic. Diversity and Distributions, 2017, 23, 982-996.	4.1	75
69	Environmental physiology of three species of Collembola at Cape Hallett, North Victoria Land, Antarctica. Journal of Insect Physiology, 2006, 52, 29-50.	2.0	73
70	The effects of acclimation and rates of temperature change on critical thermal limits in Tenebrio molitor (Tenebrionidae) and Cyrtobagous salviniae (Curculionidae). Journal of Insect Physiology, 2012, 58, 669-678.	2.0	73
71	Deleterious effects of repeated cold exposure in a freeze-tolerant sub-Antarctic caterpillar. Journal of Experimental Biology, 2005, 208, 869-879.	1.7	72
72	Physiological tolerances account for range limits and abundance structure in an invasive slug. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 1459-1468.	2.6	72

#	Article	IF	CITATIONS
73	Aliens in Antarctica: Assessing transfer of plant propagules by human visitors to reduce invasion risk. Biological Conservation, 2014, 171, 278-284.	4.1	72
74	Acclimation effects on critical and lethal thermal limits of workers of the Argentine ant, Linepithema humile. Journal of Insect Physiology, 2008, 54, 1008-1014.	2.0	70
75	Concerning invasive species: Reply to Brown and Sax. Austral Ecology, 2005, 30, 475-480.	1.5	68
76	Monitoring biological invasion across the broader Antarctic: A baseline and indicator framework. Global Environmental Change, 2015, 32, 108-125.	7.8	67
77	Basal resistance enhances warming tolerance of alien over indigenous species across latitude. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 145-150.	7.1	67
78	Human impacts, energy availability and invasion across Southern Ocean Islands. Global Ecology and Biogeography, 2005, 14, 521-528.	5.8	66
79	A metaâ€analysis of human disturbance impacts on Antarctic wildlife. Biological Reviews, 2016, 91, 578-596.	10.4	65
80	Directional Evolution of the Slope of the Metabolic Rate–Temperature Relationship Is Correlated with Climate. Physiological and Biochemical Zoology, 2009, 82, 495-503.	1.5	64
81	Invasive species differ in key functional traits from native and nonâ€invasive alien plant species. Journal of Vegetation Science, 2019, 30, 994-1006.	2.2	64
82	Interactions between desiccation resistance, host-plant contact and the thermal biology of a leaf-dwelling sub-antarctic caterpillar, Embryonopsis halticella (Lepidoptera: Yponomeutidae). Journal of Insect Physiology, 1998, 44, 615-628.	2.0	63
83	Constraint and Competition in Assemblages: A Cross ontinental and Modeling Approach for Ants. American Naturalist, 2005, 165, 481-494.	2.1	63
84	Clobal compositional variation among native and non-native regional insect assemblages emphasizes the importance of pathways. Biological Invasions, 2016, 18, 893-905.	2.4	63
85	Critical thermal limits, temperature tolerance and water balance of a sub-Antarctic kelp fly, Paractora dreuxi (Diptera: Helcomyzidae). Journal of Insect Physiology, 2001, 47, 95-109.	2.0	61
86	Rapid responses to high temperature and desiccation but not to low temperature in the freeze tolerant sub-Antarctic caterpillar Pringleophaga marioni (Lepidoptera, Tineidae). Journal of Insect Physiology, 2003, 49, 45-52.	2.0	61
87	Life stage-related differences in hardening and acclimation of thermal tolerance traits in the kelp fly, Paractora dreuxi (Diptera, Helcomyzidae). Journal of Insect Physiology, 2009, 55, 336-343.	2.0	61
88	Discontinuous gas exchange and the significance of respiratory water loss in scarabaeine beetles. Journal of Experimental Biology, 2003, 206, 3547-3556.	1.7	59
89	Polar lessons learned: longâ€ŧerm management based on shared threats in Arctic and Antarctic environments. Frontiers in Ecology and the Environment, 2015, 13, 316-324.	4.0	59
90	Reconsidering connectivity in the subâ€ <scp>A</scp> ntarctic. Biological Reviews, 2017, 92, 2164-2181.	10.4	58

#	Article	IF	CITATIONS
91	Comparing thermal performance curves across traits: how consistent are they?. Journal of Experimental Biology, 2019, 222, .	1.7	58
92	World Heritage Status and Conservation of Southern Ocean Islands. Conservation Biology, 2001, 15, 550-557.	4.7	57
93	Phenotypic plasticity of gas exchange pattern and water loss in <i>Scarabaeus spretus</i> (Coleoptera: Scarabaeidae): deconstructing the basis for metabolic rate variation. Journal of Experimental Biology, 2010, 213, 2940-2949.	1.7	57
94	Metabolism of the sub-Antarctic caterpillar Pringleophaga marioni during cooling, freezing and thawing. Journal of Experimental Biology, 2004, 207, 1287-1294.	1.7	56
95	Intraspecific variation in lizard heat tolerance alters estimates of climate impact. Journal of Animal Ecology, 2019, 88, 247-257.	2.8	56
96	Thermal limits of wild and laboratory strains of two African malaria vector species, Anopheles arabiensis and Anopheles funestus. Malaria Journal, 2012, 11, 226.	2.3	54
97	Lack of coherence in the warming responses of marine crustaceans. Functional Ecology, 2014, 28, 895-903.	3.6	53
98	Human activities, propagule pressure and alien plants in the sub-Antarctic: Tests of generalities and evidence in support of management. Biological Conservation, 2013, 161, 18-27.	4.1	52
99	Temporal biodiversity change in transformed landscapes: a southern African perspective. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 3729-3742.	4.0	50
100	Interactions between rates of temperature change and acclimation affect latitudinal patterns of warming tolerance. , 2016, 4, cow053.		50
101	The extent and impacts of ungulate translocations: South Africa in a global context. Biological Conservation, 2009, 142, 353-363.	4.1	48
102	Microclimate-based macrophysiology: implications for insects in a warming world. Current Opinion in Insect Science, 2015, 11, 84-89.	4.4	48
103	Expanding the Protected Area Network in Antarctica is Urgent and Readily Achievable. Conservation Letters, 2017, 10, 670-680.	5.7	47
104	A widespread thermodynamic effect, but maintenance of biological rates through space across life's major domains. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20181775.	2.6	47
105	Species and community responses to short-term climate manipulation: Microarthropods in the sub-Antarctic. Austral Ecology, 2006, 31, 719-731.	1.5	46
106	Intraspecific Body Size Frequency Distributions of Insects. PLoS ONE, 2011, 6, e16606.	2.5	46
107	Climate change leads to increasing population density and impacts of a key island invader. Ecological Applications, 2018, 28, 212-224.	3.8	46
108	A comparative analysis of metabolic rate in six Scarabaeus species (Coleoptera: Scarabaeidae) from southern Africa: further caveats when inferring adaptation. Journal of Insect Physiology, 2000, 46, 553-562.	2.0	45

#	Article	IF	CITATIONS
109	Quantifying the propagule load associated with the construction of an Antarctic research station. Antarctic Science, 2009, 21, 471-475.	0.9	45
110	Thermal physiology and urbanization: perspectives on exit, entry and transformation rules. Functional Ecology, 2015, 29, 902-912.	3.6	45
111	Soil biota in a megadiverse country: Current knowledge and future research directions in South Africa. Pedobiologia, 2016, 59, 129-174.	1.2	45
112	Food for thought: Risks of non-native species transfer to the Antarctic region with fresh produce. Biological Conservation, 2011, 144, 1682-1689.	4.1	43
113	Temperature-dependence of metabolic rate in Glossina morsitans morsitans (Diptera, Glossinidae) does not vary with gender, age, feeding, pregnancy or acclimation. Journal of Insect Physiology, 2005, 51, 861-870.	2.0	41
114	Geographic variation and plasticity in climate stress resistance among southern African populations of Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). Scientific Reports, 2018, 8, 9849.	3.3	41
115	TESTING GENERALITIES IN THE SHAPE OF PATCH OCCUPANCY FREQUENCY DISTRIBUTIONS. Ecology, 2000, 81, 3163-3177.	3.2	38
116	Conservation of Southern Ocean Islands: invertebrates as exemplars. Journal of Insect Conservation, 2008, 12, 277-291.	1.4	38
117	Where do functional traits come from? The role of theory and models. Functional Ecology, 2021, 35, 1385-1396.	3.6	38
118	DNA barcoding and the documentation of alien species establishment on sub-Antarctic Marion Island. Polar Biology, 2008, 31, 651-655.	1.2	37
119	Stage-related variation in rapid cold hardening as a test of the environmental predictability hypothesis. Journal of Insect Physiology, 2007, 53, 455-462.	2.0	36
120	Management implications of the Macquarie Island trophic cascade revisited: a reply to Dowding <i>etAal.</i> (2009). Journal of Applied Ecology, 2009, 46, 1133-1136.	4.0	36
121	Phenotypic Plasticity of Locomotion Performance in the Seed HarvesterMessor capensis(Formicidae). Physiological and Biochemical Zoology, 2010, 83, 519-530.	1.5	36
122	Rapid cold-hardening in a Karoo beetle, Afrinus sp Physiological Entomology, 2006, 31, 98-101.	1.5	35
123	The ecological biogeography of indigenous and introduced Antarctic springtails. Journal of Biogeography, 2019, 46, 1959-1973.	3.0	34
124	The Influence of Habitat and Altitude on Oxygen Uptake in Sub-Antarctic Weevils. Physiological Zoology, 1997, 70, 116-124.	1.5	33
125	Differential responses of thermal tolerance to acclimation in the sub-Antarctic rove beetle Halmaeusa atriceps. Physiological Entomology, 2005, 30, 195-204.	1.5	32
126	Determinants of terrestrial arthropod community composition at Cape Hallett, Antarctica. Antarctic Science, 2006, 18, 303-312.	0.9	32

#	Article	IF	CITATIONS
127	Rate dynamics of ectotherm responses to thermal stress. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190174.	2.6	32
128	Antarctica's wilderness fails to capture continent's biodiversity. Nature, 2020, 583, 567-571.	27.8	32
129	Speciation and rarity: separating cause from consequence. , 1997, , 91-109.		32
130	Phenotypic plasticity and geographic variation in thermal tolerance and water loss of the tsetse Glossina pallidipes (Diptera: Glossinidae): implications for distribution modelling. American Journal of Tropical Medicine and Hygiene, 2006, 74, 786-94.	1.4	32
131	Global patterns in species richness of pelagic seabirds: the Procellariiformes. Ecography, 1998, 21, 342-350.	4.5	31
132	Terrestrial invasions on sub-Antarctic Marion and Prince Edward Islands. Bothalia, 2017, 47, .	0.3	31
133	Metabolic rate in the whip-spider, Damon annulatipes (Arachnida: Amblypygi). Journal of Insect Physiology, 2004, 50, 637-645.	2.0	30
134	Waterâ€Balance Characteristics Respond to Changes in Body Size in Subantarctic Weevils. Physiological and Biochemical Zoology, 2003, 76, 634-643.	1.5	29
135	Trait means and reaction norms: the consequences of climate change/invasion interactions at the organism level. Evolutionary Ecology, 2010, 24, 1365-1380.	1.2	29
136	Desiccation tolerance as a function of age, sex, humidity and temperature in adults of the African malaria vectors Anopheles arabiensis Patton and Anopheles funestus Giles. Journal of Experimental Biology, 2014, 217, 3823-33.	1.7	29
137	Environmental factors, regional body size distributions and spatial variation in body size of local avian assemblages. Global Ecology and Biogeography, 2008, 17, 514-523.	5.8	28
138	Spatial scale and species identity influence the indigenous–alien diversity relationship in springtails. Ecology, 2011, 92, 1436-1447.	3.2	28
139	Spatial variation in structural damage to a keystone plant species in the sub-Antarctic: interactions between <i>Azorella selago</i> and invasive house mice. Antarctic Science, 2009, 21, 189-196.	0.9	27
140	Assemblage level variation in springtail lower lethal temperature: the role of invasive species on subâ€Antarctic Marion Island. Physiological Entomology, 2009, 34, 284-291.	1.5	26
141	Species richness and turnover among indigenous and introduced plants and insects of the Southern Ocean Islands. Ecosphere, 2018, 9, e02358.	2.2	26
142	Increasing impacts by Antarctica's most widespread invasive plant species as result of direct competition with native vascular plants. NeoBiota, 0, 51, 19-40.	1.0	26
143	Spatial variation and biogeography of sand forest avian assemblages in South Africa. Journal of Biogeography, 2000, 27, 1385-1401.	3.0	25
144	Growth and reproduction of laboratory-reared neanurid Collembola using a novel slime mould diet. Scientific Reports, 2015, 5, 11957.	3.3	25

#	Article	IF	CITATIONS
145	Updated list of Collembola species currently recorded from South Africa. ZooKeys, 2015, 503, 55-88.	1.1	25
146	High resolution temperature data for ecological research and management on the Southern Ocean Islands. Scientific Data, 2018, 5, 180177.	5.3	25
147	Population responses within a landscape matrix: a macrophysiological approach to understanding climate change impacts. Evolutionary Ecology, 2010, 24, 601-616.	1.2	24
148	Climate change and elevational diversity capacity: do weedy species take up the slack?. Biology Letters, 2013, 9, 20120806.	2.3	24
149	Upper thermal tolerance in aquatic insects. Current Opinion in Insect Science, 2015, 11, 78-83.	4.4	23
150	Geographical bias in physiological data limits predictions of global change impacts. Functional Ecology, 2021, 35, 1572-1578.	3.6	22
151	A hierarchy of factors influence discontinuous gas exchange in the grasshopper Paracinema tricolor (Orthoptera: Acrididae). Journal of Experimental Biology, 2014, 217, 3407-15.	1.7	21
152	Quantification of intra-regional propagule movements in the Antarctic. Antarctic Science, 2011, 23, 337-342.	0.9	20
153	Genetic evidence confirms the origin of the house mouse on sub-Antarctic Marion Island. Polar Biology, 2007, 30, 327-332.	1.2	19
154	The Ecological Implications of Physiological Diversity in Dung Beetles. , 2011, , 200-219.		19
155	Antagonistic effects of biological invasion and temperature change on body size of island ectotherms. Diversity and Distributions, 2014, 20, 202-213.	4.1	19
156	Basal tolerance but not plasticity gives invasive springtails the advantage in an assemblage setting. , 2020, 8, coaa049.		19
157	Discontinuous gas exchange and water loss in the keratin beetle Omorgus radula: further evidence against the water conservation hypothesis?. Physiological Entomology, 2000, 25, 309-314.	1.5	19
158	Island-hopping invaders hitch a ride with tourists in South Georgia. Nature, 2000, 408, 637-637.	27.8	18
159	Body size patterns in Drosophila inhabiting a mesocosm: interactive effects of spatial variation in temperature and abundance. Oecologia, 2006, 149, 245-255.	2.0	18
160	Linking Molecular Physiology to Ecological Realities. Physiological and Biochemical Zoology, 2006, 79, 314-323.	1.5	18
161	Realised rather than fundamental thermal niches predict site occupancy: Implications for climate change forecasting. Journal of Animal Ecology, 2020, 89, 2863-2875.	2.8	17
162	The acarine fauna of Heard Island. Polar Biology, 2002, 25, 688-695.	1.2	16

#	Article	IF	CITATIONS
163	Similar metabolic rate-temperature relationships after acclimation at constant and fluctuating temperatures in caterpillars of a sub-Antarctic moth. Journal of Insect Physiology, 2016, 85, 10-16.	2.0	16
164	Thermoregulatory traits combine with range shifts to alter the future of montane ant assemblages. Global Change Biology, 2019, 25, 2162-2173.	9.5	16
165	Springtail phylogeography highlights biosecurity risks of repeated invasions and intraregional transfers among remote islands. Evolutionary Applications, 2020, 13, 960-973.	3.1	16
166	Vagrant birds as a dispersal vector in transoceanic range expansion of vascular plants. Scientific Reports, 2019, 9, 4655.	3.3	15
167	Strangers in a strange land: Globally unusual thermal tolerance in Collembola from the Cape Floristic Region. Functional Ecology, 2020, 34, 1601-1612.	3.6	15
168	The microarthropods of sub-Antarctic Prince Edward Island: a quantitative assessment. Polar Biology, 2006, 30, 109-119.	1.2	13
169	Conservation implications of spatial genetic structure in two species of oribatid mites from the Antarctic Peninsula and the Scotia Arc. Antarctic Science, 2018, 30, 105-114.	0.9	12
170	Sub-critical limits are viable alternatives to critical thermal limits. Journal of Thermal Biology, 2021, 101, 103106.	2.5	12
171	Adequate sample sizes for improved accuracy of thermal trait estimates. Functional Ecology, 2021, 35, 2647-2662.	3.6	12
172	The macrophysiology of insect cold-hardiness. , 0, , 191-222.		11
173	Solving the puzzle of <i>Pringleophaga</i> – threatened, keystone detritivores in the subâ€Antarctic. Insect Conservation and Diversity, 2014, 7, 308-313.	3.0	11
174	The second warning to humanity: contributions and solutions from conservation physiology. , 2021, 9, .		11
175	Geographic range size and speciation in honeyeaters. Bmc Ecology and Evolution, 2022, 22, .	1.6	11
176	Animal Introductions to Southern Systems: Lessons for Ecology and for Policy. African Zoology, 2009, 44, 248-262.	0.4	10
177	Density, body size and sex ratio of an indigenous spider along an altitudinal gradient in the sub-Antarctic. Antarctic Science, 2012, 24, 15-22.	0.9	10
178	Contingent absences account for range limits but not the local abundance structure of an invasive springtail. Ecography, 2013, 36, 146-156.	4.5	10
179	Scale effects on the body size frequency distributions of <scp>A</scp> frican birds: patterns and potential mechanisms. Global Ecology and Biogeography, 2013, 22, 380-390.	5.8	10
180	Natural dispersal to sub-Antarctic Marion Island of two arthropod species. Polar Biology, 2014, 37, 781-787.	1.2	10

#	Article	IF	CITATIONS
181	A decade of invertebrate colonization pressure on Scott Base in the Ross Sea region. Biological Invasions, 2018, 20, 2623-2633.	2.4	10
182	Species-energy relationships of indigenous and invasive species may arise in different ways – a demonstration using springtails. Scientific Reports, 2019, 9, 13799.	3.3	8
183	Range expansion and increasing impact of the introduced wasp Aphidius matricariae Haliday on sub-Antarctic Marion Island. Biological Invasions, 2016, 18, 1235-1246.	2.4	7
184	Human activity strongly influences genetic dynamics of the most widespread invasive plant in the subâ€Antarctic. Molecular Ecology, 2022, 31, 1649-1665.	3.9	7
185	Half a century of thermal tolerance studies in springtails (Collembola): A review of metrics, spatial and temporal trends. Current Research in Insect Science, 2022, 2, 100023.	1.7	7
186	Phenotypic plasticity in locomotor performance of a monophyletic group of weevils accords with the warmer is better hypothesis. Journal of Experimental Biology, 2019, 222, .	1.7	6
187	An unusually diverse genus of Collembola in the Cape Floristic Region characterised by substantial desiccation tolerance. Oecologia, 2021, 195, 873-885.	2.0	6
188	Time course of acclimation of critical thermal limits in two springtail species (Collembola). Journal of Insect Physiology, 2021, 130, 104209.	2.0	6
189	Pre-freeze mortality in three species of aphids from sub-Antarctic Marion Island. Journal of Thermal Biology, 2010, 35, 255-262.	2.5	5
190	Species distribution modelling in lowâ€interaction environments: Insights from a terrestrial Antarctic system. Austral Ecology, 2013, 38, 279-288.	1.5	5
191	Chemosensory and thermal cue responses in the sub-Antarctic moth Pringleophaga marioni: Do caterpillars choose Wandering Albatross nest proxies?. Polar Biology, 2014, 37, 555-563.	1.2	5
192	Constant and fluctuating temperature acclimations have similar effects on phenotypic plasticity in springtails. Journal of Thermal Biology, 2020, 93, 102690.	2.5	5
193	Range expansion of two invasive springtails on sub-Antarctic Macquarie Island. Polar Biology, 2017, 40, 2137-2142.	1.2	5
194	Seasonal, altitudinal and host plant-related variation in the abundance of aphids (Insecta, Hemiptera) on sub-Antarctic Marion Island. Polar Biology, 2011, 34, 513-520.	1.2	4
195	Invasive species impacts on sub-Antarctic Collembola support the Antarctic climate-diversity-invasion hypothesis. Soil Biology and Biochemistry, 2022, 166, 108579.	8.8	4
196	Reply from S.L. Chown and K.J. Gaston. Trends in Ecology and Evolution, 2000, 15, 514-515.	8.7	2
197	Biotic interactions modify the effects of oxygen on insect gigantism. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10745-10746.	7.1	2
198	Ecophysiological forecasting for environmental change adaptation. Functional Ecology, 2013, 27, 930-933.	3.6	1

#	Article	IF	CITATIONS
199	Conservation of Southern Ocean Islands: invertebrates as exemplars. , 2008, , 83-97.		1
200	Discontinuous gas exchange and water loss in the keratin beetle <i>Omorgus radula</i> : further evidence against the water conservation hypothesis?. Physiological Entomology, 2000, 25, 309-314.	1.5	0
201	Life at the extremes. , 2020, , 343-354.		0