Ingmar Hartl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1088663/publications.pdf

Version: 2024-02-01

66343 49909 7,879 220 42 87 citations h-index g-index papers 227 227 227 5421 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Ultrafast MHzâ€Rate Burstâ€Mode Pump–Probe Laser for the FLASH FEL Facility Based on Nonlinear Compression of psâ€Level Pulses from an Ybâ€Amplifier Chain. Laser and Photonics Reviews, 2022, 16, .	8.7	17
2	Long-term stable, synchronizable, low-noise picosecond Ho:fiber NALM oscillator for Ho:YLF amplifier seeding. Optics Letters, 2022, 47, 822.	3.3	9
3	1-GHz dual-comb spectrometer with high mutual coherence for fast and broadband measurements. Optics Letters, 2022, 47, 1379.	3.3	8
4	High-energy bow tie multi-pass cells for nonlinear spectral broadening applications. JPhys Photonics, 2022, 4, 014002.	4.6	10
5	Multi-pass cells for post-compression of ultrashort laser pulses. Optica, 2022, 9, 197.	9.3	59
6	Factor 30 Pulse Compression by Hybrid Multipass Multiplate Spectral Broadening. Ultrafast Science, 2022, 2022, .	11.2	14
7	60 fs, 1030 nm FEL pump–probe laser based on a multi-pass post-compressed Yb:YAG source. Journal of Synchrotron Radiation, 2021, 28, 36-43.	2.4	17
8	Suppression of the vacuum space-charge effect in fs-photoemission by a retarding electrostatic front lens. Review of Scientific Instruments, 2021, 92, 053703.	1.3	17
9	Intra-Burst Pulse Characterization of a High-Power Post-Compressed Yb:YAG Laser at 100 kHz Repetition Rate. , 2021, , .		O
10	Role of dispersion and compression ratio on the temporal contrast of SPM-broadened post-compressed pulses. , 2021, , .		0
11	Tunable Pulse Shape DUV Photocathode Laser for X-ray Free Electron Lasers at DESY., 2021,,.		1
12	Compact, All-PM Fiber Integrated and Alignment-Free Ultrafast Yb:Fiber NALM Laser With Sub-Femtosecond Timing Jitter. Journal of Lightwave Technology, 2021, 39, 4431-4438.	4.6	36
13	Temporal pulse quality of a Yb:YAG burst-mode laser post-compressed in a multi-pass cell. Optics Letters, 2021, 46, 4686.	3.3	14
14	Ultrafast Pulse Compression in Bulk with > 20 Times Spectral Broadening Factor from a Single Stage. , 2021, , .		0
15	Intra-Burst Temporal Pulse Contrast of a High-Power Post-Compressed Picosecond Yb:YAG Laser. , 2021,		O
16	Flexible and Coherent Soft X-ray Pulses at High Repetition Rate: Current Research and Perspectives. Applied Sciences (Switzerland), 2021, 11, 9729.	2.5	6
17	Post-compression of 8.6 mJ ps-pulses from an Yb:YAG Innoslab amplifier using a compact multi-pass cell. , 2021, , .		1
18	Multi-Pass Cell Post-Compression for Pump-Probe Experiments at the FEL Facility FLASH., 2021,,.		0

#	Article	IF	CITATIONS
19	Synchronized beamline at FLASH2 based on high-order harmonic generation for two-color dynamics studies. Review of Scientific Instruments, 2021, 92, 123004.	1.3	3
20	A MHz-repetition-rate hard X-ray free-electron laser driven by a superconducting linear accelerator. Nature Photonics, 2020, 14, 391-397.	31.4	315
21	A synchronized VUV light source based on high-order harmonic generation at FLASH. Scientific Reports, 2020, 10, 6867.	3.3	8
22	Flexible all-PM NALM Yb:fiber laser design for frequency comb applications: operation regimes and their noise properties. Optics Express, 2020, 28, 18946.	3.4	73
23	Postcompression of picosecond pulses into the few-cycle regime. Optics Letters, 2020, 45, 2572.	3.3	95
24	Compact Ho:YLF-pumped ZnGeP ₂ -based optical parametric amplifiers tunable in the molecular fingerprint regime. Optics Letters, 2020, 45, 2255.	3.3	14
25	Intensity noise optimization of a mid-infrared frequency comb difference-frequency generation source. Optics Letters, 2020, 45, 1914.	3.3	13
26	Versatile Figure-9 Design: How to Access Low-Noise Regimes in an All-PM Yb:Fiber Laser. , 2020, , .		0
27	Compact, alignment-free, environmentally stable dispersion compensated femtosecond Yb-fiber oscillator., 2020,,.		3
28	Post-compression of high average power picosecond pulses for few cycle generation and FEL pump-probe experiments. EPJ Web of Conferences, 2020, 243, 21002.	0.3	0
29	Hybridizing Multi-pass and Multi-plate Bulk Compression. EPJ Web of Conferences, 2020, 243, 21001.	0.3	3
30	A passively mode-locked Holmium fiber oscillator based on a Nonlinear Amplifying Loop Mirror operating at 2050 nm. EPJ Web of Conferences, 2020, 243, 04002.	0.3	0
31	A synchronized VUV beamline for time domain two-color dynamic studies at FLASH2. , 2020, , .		O
32	Factor 40 pulse post-compression of 200 W in-burst average power pulses via single-stage multi-pass spectral broadening. , 2020, , .		0
33	Versatile OPCPA Pump-Probe Laser System for the FLASH2 XUV FEL Beamline at DESY., 2019, , .		5
34	All-Polarization-Maintaining Dual-Color/Dual-Comb Yb:Fiber Laser. , 2019, , .		1
35	Challenges in simulating beam dynamics of dielectric laser acceleration. International Journal of Modern Physics A, 2019, 34, 1942031.	1.5	7
36	Ultrafast Laser Technology for X-Ray FEL Science. , 2019, , .		0

#	Article	IF	CITATIONS
37	Flexible Pulse-Shape Picosecond Front-End for XFEL Photocathode Lasers. , 2019, , .		3
38	Long-Term Stabilization of Temporal and Spectral Drifts of a Burst-Mode OPCPA System., 2019, , .		2
39	Shaping femtosecond laser pulses at short wavelength with grazing-incidence optics. Optics Express, 2019, 27, 13479.	3.4	7
40	Tunable dual-comb from an all-polarization-maintaining single-cavity dual-color Yb:fiber laser. Optics Express, 2019, 27, 28062.	3.4	42
41	Long-term stable supercontinuum generation and watt-level transmission in liquid-core optical fibers. Optics Letters, 2019, 44, 2236.	3.3	17
42	Comparison of two low-noise CEP stabilization methods for an environmentally stable Yb: fiber oscillator. , 2019 , , .		0
43	Arrival Time Stabilization of the Photocathode Laser at the European XFEL., 2019,,.		0
44	Direct measurement of the pulse duration and frequency chirp of seeded XUV free electron laser pulses. New Journal of Physics, 2018, 20, 013010.	2.9	9
45	Plans for Dielectric Laser Accelerators at SINBAD. , 2018, , .		0
46	Control of FEL radiation properties by tailoring the seed pulses. Journal of Physics: Conference Series, 2018, 1067, 032012.	0.4	0
47	An Option to Generate Seeded FEL Radiation for FLASH1. Journal of Physics: Conference Series, 2018, 1067, 032013.	0.4	0
48	Coherent frequency division with a degenerate synchronously pumped optical parametric oscillator. Optics Letters, 2018, 43, 1059.	3.3	7
49	A spatio-spectral polarization analysis of $1\hat{A}\hat{A}\mu$ m-pumped bulk supercontinuum in a cubic crystal (YAG). Applied Physics B: Lasers and Optics, 2018, 124, 1.	2.2	4
50	Elements of a dielectric laser accelerator. Optica, 2018, 5, 687.	9.3	50
51	6 GHz Repetition Rate Photocathode Laser for Multi-Bunch Operation of a Relativistic Electron Gun. , $$ 2018, , .		4
52	Application of Cavity-Enhanced Comb-Based Fourier-Transform Spectroscopy to Line Shape Study of Carbon Monoxide in Argon. , 2018, , .		0
53	Compact Photo-Injector and Laser-Heater Drive Laser for the European X-ray Free Electron Laser Facility. , 2018, , .		0
54	Optical gating and streaking of free electrons with sub-optical cycle precision. Nature Communications, 2017, 8, 14342.	12.8	62

#	Article	IF	Citations
55	Study on laser characteristics of Ho:YLF regenerative amplifiers: Operation regimes, gain dynamics, and highly stable operation points. Applied Physics B: Lasers and Optics, 2017, 123, 1.	2.2	6
56	Intensity noise in mid-IR frequency combs based on difference frequency generation. , 2017, , .		0
57	Acceleration of sub-relativistic electrons with an evanescent optical wave at a planar interface. Optics Express, 2017, 25, 19195.	3.4	46
58	Intensity noise coupling in soliton fiber oscillators. Optics Letters, 2017, 42, 5266.	3.3	8
59	Sub-optical-cycle control of free electrons by optical near-fields. , 2017, , .		1
60	Widely Tunable Mid-IR, High Signal-to-Noise Frequency Comb based Fourier Transform Spectrometer., 2017,,.		0
61	Operation of a seeded XUV free-electron laser at DESY with high-gain harmonic generation. , 2017, , .		0
62	High energetic and highly stable pulses from a Ho:YLF regenerative amplifier. Proceedings of SPIE, 2016, , .	0.8	0
63	Production of quasi ellipsoidal laser pulses for next generation high brightness photoinjectors. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 829, 438-441.	1.6	5
64	Electron-beam manipulation techniques in the SINBAD Linac for external injection in plasma wake-field acceleration. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 829, 278-283.	1.6	14
65	Numerical study of spectral shaping in high energy Ho:YLF amplifiers. Optics Express, 2016, 24, 9905.	3.4	18
66	Kagome-fiber-based pulse compression of mid-infrared picosecond pulses from a Ho:YLF amplifier: publisher's note. Optica, 2016, 3, 853.	9.3	2
67	Kagome-fiber-based pulse compression of mid-infrared picosecond pulses from a Ho:YLF amplifier. Optica, 2016, 3, 816.	9.3	29
68	Transverse and longitudinal characterization of electron beams using interaction with optical near-fields. Optics Letters, 2016, 41, 3435.	3.3	8
69	Low noise, tunable Ho:fiber soliton oscillator for Ho:YLF amplifier seeding. Laser Physics Letters, 2016, 13, 065104.	1.4	17
70	Intracavity gain shaping in millijoule-level, high gain Ho:YLF regenerative amplifiers. Optics Letters, 2016, 41, 1114.	3.3	28
71	SINBADâ€"The accelerator R&D facility under construction at DESY. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 829, 233-236.	1.6	20
72	Strong-Field Few-Cycle 2-µm Pulses via Kagome-Fiber Compression of Picosecond Ho:YLF Laser Pulses. , 2016, , .		1

#	Article	F	CITATIONS
73	Multi-Octave Supercontinuum Generation Driven by Few-Cycle Mid-IR Pulses in YAG, ZnSe And Sapphire. , 2016, , .		O
74	Intensity Noise Coupling in Soliton Fiber Oscillators. , 2016, , .		0
7 5	Stability optimized, 4-mJ and 1.2-ps pulses from a Ho:YLF regenerative amplifier. , 2016, , .		1
76	Ho:YLF Regenerative Amplifier with 6.9 mJ at 1 kHz Overcoming Bifurcation Instability. , 2015, , .		0
77	Overcoming bifurcation instability in high-repetition-rate Ho:YLF regenerative amplifiers. Optics Letters, 2015, 40, 5427.	3.3	34
78	Sub-300 fs, 0.5 mJ pulse at 1kHz from Ho:YLF amplifier and Kagome pulse compression. , 2015, , .		0
79	Sub-100 fs passively mode-locked holmium-doped fiber oscillator operating at 2.06 μm., 2015, , .		2
80	High energy and low noise Ho:YLF regenerative amplifiers: a noise and stability analysis., 2015,,.		1
81	Full (3+1)D Split-Step Technique for Spatial Mode Analysis of White Light Generation in Bulk Kerr-Media. , 2015, , .		O
82	UV Laser Beam Stabilization System for the European XFEL Electron Injector Laser Beamline., 2015,,.		2
83	Passively Mode-locked Holmium-doped Fiber Oscillators Optimized for Ho:YLF Amplifier Seeding. , 2015, , .		O
84	Sub-100  fs passively mode-locked holmium-doped fiber oscillator operating at 206  Î⅓m. Optics 2014, 39, 6859.	Letters, 3.3	72
85	Fiber Lasers for Accelerators and Accelerator Driven Light Sources. , 2014, , .		O
86	Midinfrared frequency combs from coherent supercontinuum in chalcogenide and optical parametric oscillation. Optics Letters, 2014, 39, 2056.	3.3	57
87	Phase Locked System for Dual Comb Molecular Spectroscopy at 2-6 µm Based on Tm-fiber Laser. , 2014, , .		3
88	Frequency-comb-calibrated Doppler broadening thermometry. Physical Review A, 2013, 88, .	2.5	7
89	Ultrafast fibre lasers. Nature Photonics, 2013, 7, 868-874.	31.4	844
90	Mid infrared supercontinuum generation in nanotapered chalcogenide-silica step-index waveguides. , 2013, , .		O

#	Article	IF	CITATIONS
91	Fiber laser driven mid-infrared frequency combs. , 2013, , .		O
92	Mid-infrared supercontinuum generation in As_2S_3-silica "nano-spike―step-index waveguide. Optics Express, 2013, 21, 10969.	3.4	97
93	Carrier Envelope Offset of Nondegenerate, Doubly-Resonant, Midinfrared GaAs Optical Parametric Oscillators. , 2013, , .		0
94	Carrier envelope offset frequency of a doubly resonant, nondegenerate, mid-infrared GaAs optical parametric oscillator. Optics Letters, 2013, 38, 1191.	3.3	41
95	Mid-IR Frequency Combs From Coherent Supercontinuum Generation in Chalcogenide Nano-Spike Waveguides. , 2013, , .		0
96	Mid-IR frequency comb with sub-hertz residual linewidth from a doubly-resonant OPGaAs OPO. , 2013, , .		1
97	Comb-assisted precision spectroscopy of NH <inf>3</inf> at 9.1 μm., 2013, , .		0
98	High Brightness XUV Frequency Combs via Intracavity High Harmonic Generation. EPJ Web of Conferences, 2013, 41, 11006.	0.3	1
99	Mid-IR Frequency Combs From Coherent Supercontinuum Generation in Chalcogenide Nano-Spike Waveguides. , 2013, , .		0
100	Precision spectroscopy of NH3 at 9.1 \hat{l} 4m by a comb-referenced quantum cascade laser. , 2013, , .		0
101	Widely tunable midinfrared difference frequency generation in orientation-patterned GaAs pumped with a femtosecond Tm-fiber system. Optics Letters, 2012, 37, 2928.	3.3	67
102	Full phase stabilization of a Yb:fiber femtosecond frequency comb via high-bandwidth transducers. Optics Letters, 2012, 37, 2196.	3.3	53
103	Widely-tunable mid-infrared frequency comb source based on difference frequency generation. Optics Letters, 2012, 37, 2232.	3.3	91
104	Frequency comb stabilization with bandwidth beyond the limit of gain lifetime by an intracavity graphene electro-optic modulator. Optics Letters, 2012, 37, 3084.	3.3	103
105	Coherent phase lock of a 9Âμm quantum cascade laser to a 2Âμm thulium optical frequency comb. Optics Letters, 2012, 37, 4083.	3.3	48
106	Ultra-low phase-noise Tm-fiber frequency comb with an intra-cavity graphene electro-optic modulator. , 2012, , .		0
107	Broadband Intracavity Molecular Spectroscopy with a Degenerate Mid-IR OPO., 2012,,.		1
108	Tunable Mid-Infrared Source Based on Difference Frequency Generation of a Femtosecond Tm-fiber System in Orientation Patterned GaAs., 2012,,.		0

#	Article	IF	CITATIONS
109	Phase Stabilization of a Yb:fiber Frequency Comb via High-Bandwidth Transducers. , 2012, , .		О
110	Octave-spanning ultrafast OPO with 26-61µm instantaneous bandwidth pumped by femtosecond Tm-fiber laser. Optics Express, 2012, 20, 7046.	3.4	270
111	Direct frequency comb spectroscopy in the extreme ultraviolet. Nature, 2012, 482, 68-71.	27.8	385
112	Optically Referenced Tm-Fiber-Laser Frequency Comb. , 2012, , .		10
113	500 MHz, 58fs highly coherent Tm fiber soliton laser. , 2012, , .		7
114	Frequency Comb Synthesizer Tunable from 3 to 10 ŵm. , 2012, , .		0
115	Stabilization of carrier-envelope phase with MHz bandwidth by an intra-cavity graphene electro-optic modulator. , $2012, , .$		1
116	Nearly 3-6 $\hat{A}\mu m$ Spectral Comb Derived from Tm Mode-locked Laser using GaAs-based Degenerate OPO. , 2012, , .		0
117	New developments in fiber-based frequency combs. , 2011, , .		0
118	New Developments in Fiber-Laser Frequency Combs. , 2011, , .		0
119	Supercontinuum generation in quasi-phasematched waveguides. Optics Express, 2011, 19, 18754.	3.4	88
120	Power optimization of XUV frequency combs for spectroscopy applications [Invited]. Optics Express, 2011, 19, 23483.	3.4	51
121	Broadband phase noise suppression in a Yb-fiber frequency comb. Optics Letters, 2011, 36, 743.	3.3	27
122	Supercontinuum generation in quasi-phase-matched LiNbO_3 waveguide pumped by a Tm-doped fiber laser system. Optics Letters, 2011, 36, 3912.	3.3	122
123	Mode-Locked Yb-Fiber Laser for Rapid Dual Pulse Scanning Applications. , 2011, , .		2
124	Broadband Phase-Noise Suppression in a Yb-based Optical Frequency Comb., 2011,,.		0
125	1.5 Octave Highly Coherent Fiber Frequency Comb. , 2011, , .		0
126	Tunable Coherent Raman Soliton Generation with a Tm-Fiber System. , 2011, , .		6

#	Article	IF	Citations
127	Passively Mode Locked GHz Femtosecond Yb-Fiber Laser Using an Intra-Cavity Martinez Compressor., 2011,,.		3
128	Ultrabroadband coherent supercontinuum frequency comb. Physical Review A, 2011, 84, .	2.5	64
129	Self frequency shift near 2 & amp; #x00B5; m in periodically poled lithium niobate waveguides., 2011,,.		O
130	Pulse train amplitude modulation due to continuum resonances in GHz soliton fiber lasers. , $2011, \dots$		0
131	Coherent Tm-fiber Raman-soliton amplifier., 2011,,.		2
132	Fully stabilized, self-referenced thulium fiber frequency comb., 2011,,.		5
133	Coherent transfer over 1.1 spectral octave with a fiber frequency comb., 2011,,.		O
134	Fourier Transform Spectrometry Using a Single Cavity Length Modulated Mode-Locked Fiber Laser. , 2011, , .		3
135	Supercontinuum Generation near 2 \hat{l} 4m in Periodically Poled Lithium Niobate Waveguides. , 2011, , .		O
136	High Power Fiber Laser Frequency Combs for XUV Spectroscopy. , 2011, , .		0
137	75 W Yb-fiber laser frequency comb. , 2010, , .		O
138	Mid-infrared Fourier transform spectroscopy with a broadband frequency comb. Optics Express, 2010, 18, 21861.	3.4	230
139	80 W, 120 fs Yb-fiber frequency comb. Optics Letters, 2010, 35, 3015.	3.3	139
140	High-power Yb-frequency comb using fiber stretcher $\!\!\!/$ grating compressor and linear amplification. , 2010, , .		0
141	Power Scaling of High-Repetition-Rate HHG. , 2010, , .		3
142	Yb-Fiber Laser Frequency Combs. , 2010, , .		0
143	GHz Yb-femtosecond-fiber laser frequency comb. , 2009, , .		2
144	Rapidly scanning Fourier transform spectrometer based on a GHz repetition rate Yb-fiber laser pair. , 2009, , .		1

#	Article	IF	CITATIONS
145	Diffraction-limited output from multi-core fibers using coherent beam combination and a diffractive optical element., 2009,,.		O
146	Rapidly scanning, high resolution Yb fiber based frequency comb-Fourier transform spectrometer., 2009,,.		1
147	Fiber laser based hyperspectral sources. Laser Physics Letters, 2009, 6, 11-21.	1.4	47
148	Ultrafast Fiber Laser Technology. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15, 191-206.	2.9	333
149	Phase-stabilized, 15 W frequency comb at 28–48 μm. Optics Letters, 2009, 34, 1330.	3.3	294
150	Phase-stabilized, 1.5-W mid-infrared frequency comb. , 2009, , .		0
151	Fully stabilized GHz Yb-fiber laser frequency comb. , 2009, , .		5
152	GHz Yb-fiber laser frequency comb for spectroscopy applications. , 2009, , .		1
153	Optical frequency comb with submillihertz linewidth and more than 10ÂW average power. Nature Photonics, 2008, 2, 355-359.	31.4	233
154	10 W average power frequency comb with sub-mHz relative linewidths from an Yb:fiber system. , 2008, , .		0
155	Self-referenced f <inf>CEO</inf> stabilization of a low noise femtosecond fiber oscillator. , 2008, , .		1
156	Precision phase stabilization of amplified Yb:fiber frequency comb with average power >; 10W., 2008, , .		0
157	Self-referenced Yb-fiber-laser frequency comb using a dispersion micromanaged tapered holey fiber. , 2007, , .		0
158	Octave-level spectral broadening in RPE PPLN waveguides. , 2007, , .		0
159	Fiber frequency combs. , 2007, , .		0
160	Generation of octave-spanning spectra inside reverse-proton-exchanged periodically poled lithium niobate waveguides. Optics Letters, 2007, 32, 2478.	3.3	93
161	Cavity-enhanced similariton Yb-fiber laser frequency comb: 3×10^14 W/cm^2 peak intensity at 136 MHz. Optics Letters, 2007, 32, 2870.	3 . 3	84
162	Self referenced Yb-fiber-laser frequency comb using a dispersion micromanaged tapered holey fiber. Optics Express, 2007, 15, 12161.	3.4	27

#	Article	IF	CITATIONS
163	Er- and Yb-doped Fiber Laser Frequency Combs and Their Applications. LEOS Summer Topical Meeting, 2007, , .	0.0	1
164	Passive cavity enhancement of a femtosecond fiber chirped pulse amplification system to 204W average power. , 2007, , .		3
165	Xe plasma generated by a cavity enhanced Yb-similariton laser based fiber frequency comb. , 2007, , .		0
166	High power ultrafast fiber amplifiers. , 2006, , .		O
167	Fiber-laser frequency combs with subhertz relative linewidths. Optics Letters, 2006, 31, 3046.	3.3	107
168	Ultrafast high energy amplifiers beyond the B-integral limit. , 2006, , .		4
169	170MHz spaced, self-referenced fiber-frequency-comb. , 2006, , .		1
170	Integrated fiber-frequency comb using a PPLN waveguide for spectral broadening and CEO phase detection. , 2006, , .		1
171	High energy fiber chirped pulse amplification system based on cubicons. , 2005, , .		5
172	An optimized Er all-fiber chirped pulse amplification system producing 570-fs, 310-nJ pulses. , 2005, , .		0
173	High energy femtosecond Yb cubicon fiber amplifier. Optics Express, 2005, 13, 4717.	3.4	143
174	Integrated self-referenced frequency-comb laser based on a combination of fiber and waveguide technology. Optics Express, 2005, 13, 6490.	3.4	56
175	Ultra-compact dispersion compensated femtosecond fiber oscillators and amplifiers., 2005,,.		25
176	Ultrahigh-resolution optical coherence tomography in glaucoma. Ophthalmology, 2005, 112, 229-237.	5.2	80
177	Comparison of Ultrahigh- and Standard-Resolution Optical Coherence Tomography for Imaging Macular Pathology. Ophthalmology, 2005, 112, 1922.e1-1922.e15.	5.2	196
178	Fiber Based Frequency Comb Lasers. , 2005, , .		0
179	Fiber Based Frequency Comb Lasers and Their Applications. , 2005, , .		0
180	Carrier envelope phase locking of an in-line, low-noise Er fiber system. , 2004, , 176.		1

#	Article	IF	Citations
181	Carrier envelope phase locking of an in-line, low-noise Er fiber system. , 2004, , PDP10.		2
182	Design and characterization of semiconductor-doped silica film saturable absorbers. Journal of the Optical Society of America B: Optical Physics, 2004, 21, 851.	2.1	9
183	An optimized Er gain band all-fiber chirped pulse amplification system. Optics Express, 2004, 12, 6508.	3.4	35
184	Chirped pulse amplification with a nonlinearly chirped fiber Bragg grating matched to the Treacy compressor. Optics Letters, 2004, 29, 679.	3.3	43
185	Frequency metrology with a turnkey all-fiber system. Optics Letters, 2004, 29, 2467.	3.3	191
186	Yb fiber laser chirped pulse amplifier system using a fiber Bragg grating stretcher matched to the Treacy compressor. , 2004, , .		0
187	High-speed path-length scanning with a multiple-pass cavity delay line. Applied Optics, 2003, 42, 640.	2.1	34
188	High-resolution optical coherence microscopy for high-speed, in vivo cellular imaging. Optics Letters, 2003, 28, 2064.	3.3	140
189	Photonic Device Fabrication With Femtosecond Laser Oscillators. Optics and Photonics News, 2003, 14, 44.	0.5	4
190	Ultrahigh resolution real time OCT imaging using a compact femtosecond Nd:Glass laser and nonlinear fiber. Optics Express, 2003, 11 , 3290.	3.4	134
191	Ultrahigh-resolution optical coherence tomography for enhanced visualization of retinal pathology. , 2003, , .		0
192	Portable broadband light sources using a femtosecond Nd: Glass laser and nonlinear fiber for ultrahigh-resolution OCT imaging. , 2003, , .		1
193	Transverse priority scanning and microscopy for high-resolution optical coherence tomography. , 2003, , .		1
194	Real-time ultrahigh-resolution OCT systems for in vivo imaging. , 2003, , .		0
195	Ultrahigh Resolution Optical Coherence Tomography using Novel Femtosecond Lasers. Springer Series in Chemical Physics, 2003, , 660-662.	0.2	0
196	Ultrahigh resolution optical coherence tomography for quantitative topographic mapping of retinal and intraretinal architectural morphology., 2002, 4619, 223.		0
197	Photolysis of Triiodide Studied by Femtosecond Pumpâ [^] Probe Spectroscopy with Emission Detection. Journal of Physical Chemistry A, 2002, 106, 1647-1653.	2.5	12
198	Ultrahigh resolution optical coherence tomography using a superluminescent light source. Optics Express, 2002, 10, 349.	3.4	84

#	Article	IF	Citations
199	Ultrahigh resolution optical coherence tomography using novel femtosecond laser sources., 2002,,.		O
200	Ultrahigh-resolution optical coherence tomography using continuum generation in an air–silica microstructure optical fiber. Optics Letters, 2001, 26, 608.	3.3	865
201	Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator. Optics Letters, 2001, 26, 1516.	3.3	323
202	Ultrahigh resolution in vivo versus ex vivo OCT imaging and tissue preservation. , 2001, , .		0
203	<title>Ultrahigh resolution OCT using continuum generation in an air-silica microstructure optical fiber</title> ., 2001, 4431, 25.		0
204	Ultrahigh-resolution in-vivo versus ex-vivo OCT imaging and tissue preservation., 2001, 4251, 170.		2
205	Ultrahigh-resolution OCT using continuum generation in an air-silica microstructure optical fiber., 2001,,.		0
206	High-speed path length scanning using a Herriott cell delay line. , 2001, , .		0
207	Imaging water absorption with spectroscopic optical coherence tomography., 2001,,.		0
208	High-speed path length scanning using a Herriott cell delay line. , 2001, , .		0
209	Ultrafast redistribution of vibrational excitation of CH-stretching modes probed via anti-Stokes Raman scattering. Applied Physics B: Lasers and Optics, 2000, 71, 397-403.	2.2	19
210	Redistribution and Relaxation of Vibrational Excitation of CH-Stretching Modes in 1,1-Dichloroethylene and 1,1,1-Trichloroethane. Journal of Physical Chemistry A, 2000, 104, 4218-4222.	2.5	29
211	A novel spectrometer system for the investigation of vibrational energy relaxation with sub-picosecond time resolution. Optics Communications, 1999, 160, 184-190.	2.1	12
212	Primary photosynthesis in reaction centers containing four different types of electron acceptors at site HA. Chemical Physics, 1995, 197, 297-305.	1.9	49
213	Fabrication of glass photonic devices by an unamplified femtosecond laser. , 0, , .		0
214	Versatile photonic device fabrication using nonlinear processing in glass with a femtosecond laser oscillator. , 0, , .		0
215	Ultrafast dynamics of non-epitaxially grown semiconductor-doped silica film saturable absorbers. , 0,		0
216	High resolution OCT imaging using a spectrally broadened femtosecond Nd:glass laser., 0,,.		1

#	ARTICLE	IF	CITATIONS
217	Optical coherence microscopy using a reflective grating phase delay scanner. , 0, , .		0
218	Absolute frequency measurement of an acetylene-stabilized laser at 1542 nm., 0,,.		0
219	Comparison of two low-noise CEO frequencystabilization methods foran all-PM Yb:fiber NALM oscillator. OSA Continuum, 0, , .	1.8	1
220	Temporal quality of post-compressed pulses at large compression factors. Journal of the Optical Society of America B: Optical Physics, O, , .	2.1	12