Tae Wan Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10882569/publications.pdf Version: 2024-02-01

TAF WANKIM

#	Article	IF	CITATIONS
1	Biphasic Activation of WNT Signaling Facilitates the Derivation of Midbrain Dopamine Neurons from hESCs for Translational Use. Cell Stem Cell, 2021, 28, 343-355.e5.	11.1	100
2	Activation of HERV-K(HML-2) disrupts cortical patterning and neuronal differentiation by increasing NTRK3. Cell Stem Cell, 2021, 28, 1566-1581.e8.	11.1	27
3	Pluripotent Stem Cell Therapies for Parkinson Disease: Present Challenges and Future Opportunities. Frontiers in Cell and Developmental Biology, 2020, 8, 729.	3.7	65
4	A Human Pluripotent Stem Cell-based Platform to Study SARS-CoV-2 Tropism and Model Virus Infection in Human Cells and Organoids. Cell Stem Cell, 2020, 27, 125-136.e7.	11.1	543
5	Loss of SATB1 Induces p21-Dependent Cellular Senescence in Post-mitotic Dopaminergic Neurons. Cell Stem Cell, 2019, 25, 514-530.e8.	11.1	96
6	A hPSC-based platform to discover gene-environment interactions that impact human β-cell and dopamine neuron survival. Nature Communications, 2018, 9, 4815.	12.8	29
7	Zinc finger proteins orchestrate active gene silencing during embryonic stem cell differentiation. Nucleic Acids Research, 2018, 46, 6592-6607.	14.5	19
8	Abundance of Câ€ŧerminal binding protein isoform is a prerequisite for exit from pluripotency in mouse embryonic stem cells. FASEB Journal, 2018, 32, 6423-6435.	0.5	5
9	Cyclin-dependent kinase 1 activity coordinates the chromatin associated state of Oct4 during cell cycle in embryonic stem cells. Nucleic Acids Research, 2018, 46, 6544-6560.	14.5	25
10	Ctbp2-mediated β-catenin regulation is required for exit from pluripotency. Experimental and Molecular Medicine, 2017, 49, e385-e385.	7.7	15
11	Aurkb/PP1-mediated resetting of Oct4 during the cell cycle determines the identity of embryonic stem cells. ELife, 2016, 5, e10877.	6.0	43
12	Core Pluripotency Factors Directly Regulate Metabolism in Embryonic Stem Cell to Maintain Pluripotency. Stem Cells, 2015, 33, 2699-2711.	3.2	89
13	Ctbp2 Modulates NuRD-Mediated Deacetylation of H3K27 and Facilitates PRC2-Mediated H3K27me3 in Active Embryonic Stem Cell Genes During Exit from Pluripotency. Stem Cells, 2015, 33, 2442-2455.	3.2	61
14	<scp>ATP</scp> â€eitrate lyase regulates cellular senescence via an <scp>AMPK</scp> â€and p53â€dependent pathway. FEBS Journal, 2015, 282, 361-371.	4.7	53
15	O-GlcNAc Regulates Pluripotency and Reprogramming by Directly Acting on Core Components of the Pluripotency Network. Cell Stem Cell, 2012, 11, 62-74.	11.1	268