G Sundararajan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10882234/publications.pdf

Version: 2024-02-01

		38742	56724
181	8,571	50	83
papers	citations	h-index	g-index
182	182	182	5165
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Influence of SiC reinforcement content and heat treatment on the corrosion behavior of pulsed electrodeposited Ni-W alloy metal matrix composite. Materialia, 2022, 22, 101390.	2.7	11
2	On the understanding of microstructural evolution during hot deformation of n-ODS-18Cr ferritic steel containing heterogeneous microstructure. Materials Science & Digineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 800, 140343.	5.6	5
3	Strengthening Mechanisms in Nano Oxide Dispersion-Strengthened Fe-18Cr Ferritic Steel at Different Temperatures. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 1901-1912.	2.2	1
4	Role of Microstructure and Temperature on the Tensile Fracture Behavior of Oxide Dispersion Strengthened 18Cr Ferritic Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 1826-1835.	2.2	4
5	Role of stacking fault energy (SFE) on the high strain rate deformation of cold sprayed Cu and Cu–Al alloy coatings. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 814, 141242.	5.6	16
6	Compositionâ€Dependent Longâ€Term Stability of Mosaic Solidâ€Electrolyte Interface for Longâ€Life Lithiumâ€lon Battery. Batteries and Supercaps, 2021, 4, 1720-1730.	4.7	5
7	Surface oxygen vacancy engineering and physical protection by in-situ carbon coating process of lithium rich layered oxide. Journal of Power Sources, 2021, 515, 230623.	7.8	14
8	Influence of nanoprecipitates, solid solution and grain size on the magnetic and electrical properties of Fe-P-Si alloys. Journal of Magnetism and Magnetic Materials, 2020, 493, 165743.	2.3	5
9	Corrosion behaviour of compositionally modulated nanocrystalline Ni–W coatings. Surface Engineering, 2020, 36, 952-959.	2.2	12
10	Influence of pulse parameters on the mechanical properties and electrochemical corrosion behavior of electrodeposited Ni-W alloy coatings with high tungsten content. Corrosion Science, 2020, 165, 108409.	6.6	60
11	Processing of Ceramic and Cermet Composite Coatings for Strategic and Aerospace Applications. , 2020, , 1465-1526.		O
12	Effect of recovery and recrystallization on microstructure and magnetic properties of Fe-0.4P rolled sheets. Materialia, 2020, 13, 100863.	2.7	0
13	Creep deformation behavior of nano oxide dispersion strengthened Fe–18Cr ferritic steel. Materialia, 2020, 12, 100788.	2.7	3
14	A combined electron microscopy, atom probe tomography and small angle X-ray scattering study of oxide dispersion strengthened 18Cr ferritic steel. Materials Characterization, 2020, 164, 110306.	4.4	7
15	Influence of Nozzle Throat Cross Section on Microstructure and Properties of Cold Sprayed Coatings. Journal of Thermal Spray Technology, 2019, 28, 1718-1729.	3.1	10
16	Influence of molybdenum on the mechanical properties, electrochemical corrosion and wear behavior of electrodeposited Ni-Mo alloy. Surface and Coatings Technology, 2019, 370, 298-310.	4.8	55
17	Thermally activated plastic deformation behavior of nano oxide dispersion strengthened Fe-18Cr steel: Experiments and analysis. Materialia, 2019, 6, 100257.	2.7	6
18	A new model for predicting the grain size of electrodeposited nanocrystalline nickel coatings containing sulphur, phosphorus or boron based on typical systems. Journal of Electroanalytical Chemistry, 2019, 833, 198-204.	3.8	19

#	Article	lF	CITATIONS
19	Processing of Ceramic and Cermet Composite Coatings for Strategic and Aerospace Applications. , 2019, , 1-62.		O
20	Solid Particle Erosion of Nanocrystalline Nickel Coatings: Influence of Grain Size and Adiabatic Shear Bands. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 476-489.	2.2	8
21	In Situ/ex Situ Investigations on the Formation of the Mosaic Solid Electrolyte Interface Layer on Graphite Anode for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2018, 122, 28717-28726.	3.1	62
22	On the Constraint Factor and Tabor Coefficient Pertinent to Spherical Indentation. Transactions of the Indian Institute of Metals, 2018, 71, 2893-2901.	1.5	2
23	Tribological Behavior of Pulsed Electrodeposited Ni-W/SiC Nanocomposites. Journal of Materials Engineering and Performance, 2018, 27, 5236-5245.	2.5	49
24	Sliding wear of as-deposited and heat-treated nanocrystalline nickel-tungsten alloy coatings. Wear, 2018, 412-413, 136-143.	3.1	13
25	Weibull analysis of hardness distribution in detonation sprayed nano-structured WC-12Co coatings. Surface and Coatings Technology, 2017, 319, 394-402.	4.8	25
26	Influence of heat treatment on microstructure and mechanical properties of pulse electrodeposited Ni-W alloy coatings. Surface and Coatings Technology, 2017, 319, 403-414.	4.8	57
27	Microstructure–mechanical property correlation in oxide dispersion strengthened 18Cr ferritic steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 708, 451-459.	5.6	30
28	In-situ carbon encapsulation of LiNi1/3Co1/3Mn1/3O2 using pillared ethylene glycol trapped in the metal hydroxide interlayers for enhanced cyclic stability. Electrochimica Acta, 2017, 251, 363-377.	5.2	12
29	Role of Silicon Carbide in Phase-Evolution and Oxidation Behaviors of Pulse Electrodeposited Nickel-Tungsten Coating. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 501-512.	2.2	11
30	Detonation Sprayed Coatings for Aerospace Applications. Indian Institute of Metals Series, 2017, , 483-500.	0.3	2
31	Effect of Si addition on AC and DC magnetic properties of (Fe-P)-Si alloy. AIP Advances, 2016, 6, .	1.3	4
32	Influence of Dispersoids on Corrosion Behavior of Oxide Dispersion-Strengthened 18Cr Steels made by High-Energy Milling. Journal of Materials Engineering and Performance, 2016, 25, 577-586.	2.5	11
33	Experimental investigation of grain boundaries misorientations and nano twinning induced strengthening on addition of silicon carbide in pulse electrodeposited nickel tungsten composite coating. Materials Characterization, 2016, 116, 1-7.	4.4	30
34	Pulsed electrodeposition and mechanical properties of Ni-W/SiC nano-composite coatings. Materials and Design, 2016, 112, 140-150.	7.0	159
35	Effect of Process Parameters on Microstructure and Hardness of Oxide Dispersion Strengthened 18Cr Ferritic Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 4197-4209.	2.2	20
36	Influence of mode of electrodeposition, current density and saccharin on the microstructure and hardness of electrodeposited nanocrystalline nickel coatings. Surface and Coatings Technology, 2016, 291, 130-140.	4.8	112

#	Article	IF	CITATIONS
37	Process Optimization for Pulse Reverse Electrodeposition of Graphene-Reinforced Copper Nanocomposites. Materials and Manufacturing Processes, 2016, 31, 1439-1446.	4.7	23
38	Microstructural, phase evolution and corrosion properties of silicon carbide reinforced pulse electrodeposited nickel–tungsten composite coatings. Applied Surface Science, 2016, 364, 264-272.	6.1	54
39	Engineered surfaces for automotive engine and power train components. Current Opinion in Chemical Engineering, $2016,11,1$ -6.	7.8	14
40	The influence of phase gradient within the micro arc oxidation (MAO) coatings on mechanical and tribological behaviors. Surface and Coatings Technology, 2015, 269, 54-63.	4.8	41
41	Influence of pulsed current on the aqueous corrosion resistance of electrodeposited zinc. Surface and Coatings Technology, 2015, 272, 373-379.	4.8	26
42	Relative hardness and corrosion behavior of micro arc oxidation coatings deposited on binary and ternary magnesium alloys. Materials & Design, 2015, 77, 6-14.	5.1	52
43	Sliding wear behavior of electrodeposited Ni–W alloy and hard chrome coatings. Wear, 2015, 342-343, 340-348.	3.1	83
44	Controllable Crystallographic Texture in Copper Foils Exhibiting Enhanced Mechanical and Electrical Properties by Pulse Reverse Electrodeposition. Crystal Growth and Design, 2015, 15, 4448-4458.	3.0	42
45	Influence of the duration of high energy ball milling on the microstructure and mechanical properties of a 9Cr oxide dispersion strengthened ferritic–martensitic steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 620, 490-499.	5 . 6	22
46	Scratch-Induced Deformation Behavior of Cold-Sprayed Aluminum Amorphous/Nanocrystalline Coatings at Multiple Load Scales. Journal of Thermal Spray Technology, 2014, 23, 502-513.	3.1	21
47	Aqueous Corrosion Behavior of Micro Arc Oxidation (MAO)-Coated Magnesium Alloys: A Critical Review. Jom, 2014, 66, 1045-1060.	1.9	34
48	A New Electrochemical Approach for the Synthesis of Copper-Graphene Nanocomposite Foils with High Hardness. Scientific Reports, 2014, 4, 4049.	3.3	204
49	Microstructure, mechanical properties and machining performance of spark plasma sintered Al2O3–ZrO2–TiCN nanocomposites. Journal of the European Ceramic Society, 2013, 33, 2597-2607.	5.7	32
50	Strengthening Mechanisms in Mechanically Milled Oxide-Dispersed Iron Powders. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 1611-1620.	2.2	15
51	A Comparison of Mechanical and Tribological Behavior of Nanostructured and Conventional WC-12Co Detonation-Sprayed Coatings. Journal of Thermal Spray Technology, 2013, 22, 478-490.	3.1	9
52	Compositionally modulated CGDS+MAO duplex coatings for corrosion protection of AZ91 magnesium alloy. Journal of Alloys and Compounds, 2013, 578, 355-361.	5 . 5	27
53	Fabrication and Photoelectrochemical Characterization of Fe, Co, Ni and Cu-Doped TiO ₂ Thin Films. Materials Science Forum, 2013, 764, 266-283.	0.3	8
54	The Elastic Modulus of Cold Spray Coatings: Influence of Inter-splat Boundary Cracking. Journal of Thermal Spray Technology, 2013, 22, 1348-1357.	3.1	44

#	Article	IF	CITATIONS
55	The Corrosion Behavior of Cold Sprayed Zinc Coatings on Mild Steel Substrate. Journal of Thermal Spray Technology, 2013, 22, 463-470.	3.1	83
56	Effect of micro arc oxidation treatment on localized corrosion behaviour of AA7075 aluminum alloy in 3.5% NaCl solution. Transactions of Nonferrous Metals Society of China, 2012, 22, 700-710.	4.2	72
57	Sliding wear behavior of nanocrystalline nickel coatings: Influence of grain size. Wear, 2012, 296, 536-546.	3.1	50
58	Understanding dynamic indentation behaviour of metallic materials. Materials Science and Technology, 2012, 28, 1101-1107.	1.6	7
59	Influence of Li-doping on structural characteristics and photocatalytic activity of ZnO nano-powder formed in a novel solution pyro-hydrolysis route. Applied Surface Science, 2012, 259, 524-537.	6.1	44
60	Preparation and Characterization of Ni-Doped Materials for Photocurrent and Photocatalytic Applications. Scientific World Journal, The, 2012, 2012, 1-16.	2.1	171
61	Preparation and characterization of Co-doped TiO2 materials for solar light induced current and photocatalytic applications. Materials Chemistry and Physics, 2012, 135, 220-234.	4.0	99
62	Aqueous slip casting and hydrolysis assisted solidification of MgAl ₂ O ₄ spinel ceramics. Advances in Applied Ceramics, 2011, 110, 63-69.	1.1	19
63	Novel route to <i>β</i> àâ€iAlON–SiO ₂ ceramic composites. Advances in Applied Ceramics, 2011, 110, 87-94.	1.1	6
64	Optimizing mechanical properties of spark plasma sintered ZTA using neural network and genetic algorithm. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 529, 492-496.	5.6	6
65	The influence of process parameters and heat treatment on the properties of cold sprayed silver coatings. Surface and Coatings Technology, 2011, 205, 4798-4807.	4.8	55
66	The Influence of Powder Particle Velocity and Microstructure on the Properties of Cold Sprayed Copper Coatings. Journal of Thermal Spray Technology, 2011, 20, 1009-1021.	3.1	53
67	Influence of prior corrosion on the high cycle fatigue behavior of microarc oxidation coated 6061-T6 Aluminum alloy. International Journal of Fatigue, 2011, 33, 1268-1276.	5.7	29
68	The influence of erodent hardness on the erosion behavior of detonation sprayed WC-12Co coatings. Wear, 2011, 270, 903-913.	3.1	56
69	The influence of the coating technique on the high cycle fatigue life of alumina coated Al 6061 alloy. Transactions of the Indian Institute of Metals, 2010, 63, 203-208.	1.5	20
70	High-Cycle Fatigue Behavior of Microarc Oxidation Coatings Deposited on a 6061-T6 Al Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 255-265.	2.2	28
71	Influence of Electrolyte Chemistry on Morphology and Corrosion Resistance of Micro Arc Oxidation Coatings Deposited on Magnesium. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 3499-3508.	2.2	51
72	Influence of Grit Blasting on the Roughness and the Bond Strength of Detonation Sprayed Coating. Journal of Thermal Spray Technology, 2010, 19, 805-815.	3.1	28

#	Article	IF	Citations
73	Evaluation of Parameters for Assessment of Inter-Splat Bond Strength in Cold-Sprayed Coatings. Journal of Thermal Spray Technology, 2010, 19, 1255-1266.	3.1	44
74	The tribological behaviour of detonation sprayed TiMo(CN) based cermet coatings. International Journal of Refractory Metals and Hard Materials, 2010, 28, 71-81.	3.8	13
75	Abrasive wear behavior of detonation sprayed WC–12Co coatings: Influence of decarburization and abrasive characteristics. Wear, 2010, 268, 1387-1399.	3.1	65
76	Influence of processing route on microstructure and mechanical properties of MgAl2O4 spinel. Ceramics International, 2010, 36, 473-482.	4.8	58
77	A novel colloidal processing route to alumina ceramics. Ceramics International, 2010, 36, 1357-1364.	4.8	33
78	Highly (111) Textured Copper Foils with High Hardness and High Electrical Conductivity by Pulse Reverse Electrodeposition. Electrochemical and Solid-State Letters, 2010, 13, D40.	2.2	23
79	The dynamic indentation behavior of steel at large depths of penetration. Journal of Materials Research, 2009, 24, 691-703.	2.6	2
80	The influence of heat treatment on the microstructural, mechanical and corrosion behaviour of cold sprayed SS 316L coatings. Journal of Materials Science, 2009, 44, 2320-2326.	3.7	66
81	Detonation sprayed WC-Co coatings: unique aspects of their structure and mechanical behaviour. Transactions of the Indian Institute of Metals, 2009, 62, 95-103.	1.5	10
82	Effect of Micro Arc Oxidation Coatings on Corrosion Resistance of 6061-Al Alloy. Journal of Materials Engineering and Performance, 2008, 17, 708-713.	2.5	38
83	Performance of plasma sprayed and detonation gun sprayed Cu–Ni–In coatings on Ti–6Al–4V under plain fatigue and fretting fatigue loading. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 479, 83-92.	5.6	30
84	Dense \hat{l}^2 -SiAlONs consolidated by a modified hydrolysis-assisted solidification route. Journal of the European Ceramic Society, 2008, 28, 879-885.	5.7	22
85	A non-aqueous processing route for phosphate-protection of AlN powder against hydrolysis. Journal of the European Ceramic Society, 2008, 28, 2281-2288.	5.7	24
86	Processing–structure–property correlation and decarburization phenomenon in detonation sprayed WC–12Co coatings. Acta Materialia, 2008, 56, 5012-5026.	7.9	111
87	Influence of microarc oxidation and hard anodizing on plain fatigue and fretting fatigue behaviour of Al–Mg–Si alloy. Surface and Coatings Technology, 2008, 202, 1462-1469.	4.8	64
88	The effect of boron-pack refreshment on the boriding of mild steel by the spark plasma sintering (SPS) process. Surface and Coatings Technology, 2008, 202, 2830-2836.	4.8	9
89	Influence of detonation gun sprayed alumina coating on AA 6063 samples under cyclic loading with and without fretting. Tribology International, 2008, 41, 315-322.	5.9	24
90	Effect of microarc oxidised layer thickness on plain fatigue and fretting fatigue behaviour of Al–Mg–Si alloy. International Journal of Fatigue, 2008, 30, 1259-1266.	5.7	22

#	Article	IF	CITATIONS
91	An Aqueous Gelcasting Route to Dense β-Si4Al2O2N6–0.5SiO2Ceramics. Journal of the American Ceramic Society, 2008, 91, 1566-1571.	3.8	21
92	Influence of processing route and SiO ₂ on sintering ability, CTE, and dielectric constant of β-Si ₄ Al ₂ O ₂ N ₆ . Journal of Materials Research, 2008, 23, 2305-2311.	2.6	5
93	Effect of heat treatment on properties of cold sprayed nanocrystalline copper alumina coatings. Acta Materialia, 2007, 55, 4741-4751.	7.9	116
94	Kinetics and Properties of Micro Arc Oxidation Coatings Deposited on Commercial Al Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2007, 38, 370-378.	2.2	49
95	Effect of Feedstock Size and its Distribution on the Properties of Detonation Sprayed Coatings. Journal of Thermal Spray Technology, 2007, 16, 281-290.	3.1	32
96	Effect of Process Parameters and Heat Treatments on Properties of Cold Sprayed Copper Coatings. Journal of Thermal Spray Technology, 2007, 16, 425-434.	3.1	110
97	Influence of Substrate Material on Plain Fatigue and Fretting Fatigue Behavior of Detonation Gun Sprayed Cu-Ni-In Coating. Journal of Thermal Spray Technology, 2007, 16, 571-579.	3.1	13
98	The localization of plastic flow under dynamic indentation conditions: II. Analysis of results. Acta Materialia, 2006, 54, 577-586.	7.9	22
99	The localization of plastic flow under dynamic indentation conditions: I. Experimental results. Acta Materialia, 2006, 54, 565-575.	7.9	43
100	Effect of detonation gun sprayed Cu–Ni–In coating on plain fatigue and fretting fatigue behaviour of Al–Mg–Si alloy. Surface and Coatings Technology, 2006, 201, 1548-1558.	4.8	19
101	Boride layer growth kinetics during boriding of molybdenum by the Spark Plasma Sintering (SPS) technology. Surface and Coatings Technology, 2006, 201, 2849-2853.	4.8	34
102	A comparative study of tribological behavior of microarc oxidation and hard-anodized coatings. Wear, 2006, 261, 1095-1101.	3.1	121
103	Influence of process parameters during pulsed Nd:YAG laser cutting of nickel-base superalloys. Journal of Materials Processing Technology, 2005, 170, 229-239.	6. 3	146
104	A statistical approach to determine process parameter impact in Nd:YAG laser drilling of IN718 and Ti-6Al-4V sheets. Optics and Lasers in Engineering, 2005, 43, 163-182.	3.8	70
105	Formation of hard tungsten boride layer by spark plasma sintering boriding. Thin Solid Films, 2005, 478, 232-237.	1.8	65
106	FeB/FeB phase transformation during SPS pack-boriding: Boride layer growth kinetics. Acta Materialia, 2005, 53, 2361-2368.	7.9	204
107	The tribological behaviour of detonation sprayed coatings: the importance of coating process parameters. Wear, 2005, 258, 377-391.	3.1	38
108	Coatability and Characterization of Fly Ash Deposited on Mild Steel by Detonation Spraying. Journal of Thermal Spray Technology, 2003, 12, 77-79.	3.1	22

#	Article	IF	Citations
109	Mechanisms underlying the formation of thick alumina coatings through the MAO coating technology. Surface and Coatings Technology, 2003, 167, 269-277.	4.8	430
110	The tribological performance of ultra-hard ceramic composite coatings obtained through microarc oxidation. Surface and Coatings Technology, 2003, 163-164, 484-490.	4.8	208
111	Thermal spray coating of aluminum nitride utilizing the detonation spray technique. Journal of Materials Research, 2002, 17, 2514-2523.	2.6	22
112	Boriding of mild steel using the spark plasma sintering (SPS) technique. Surface and Coatings Technology, 2002, 157, 226-230.	4.8	49
113	Influence of the pack thickness of the boronizing mixture on the boriding of steel. Surface and Coatings Technology, 2002, 149, 21-26.	4.8	183
114	Geometrical features and metallurgical characteristics of Nd:YAG laser drilled holes in thick IN718 and Ti–6Al–4V sheets. Journal of Materials Processing Technology, 2002, 127, 83-95.	6.3	162
115	Experimental design and performance analysis of alumina coatings deposited by a detonation spray process. Journal Physics D: Applied Physics, 2001, 34, 131-140.	2.8	28
116	Erosion-oxidation interaction in Ni and Ni-20Cr alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2001, 32, 1431-1451.	2.2	32
117	Influence of spraying variables on structure and properties of plasma sprayed alumina coatings. Advances in Applied Ceramics, 2000, 99, 241-247.	0.4	9
118	Influence of process variables on the quality of detonation gun sprayed alumina coatings. Surface and Coatings Technology, 2000, 123, 44-54.	4.8	57
119	Correlation between the characteristics of the mechanically mixed layer and wear behaviour of aluminium, Al-7075 alloy and Al-MMCs. Wear, 2000, 245, 22-38.	3.1	310
120	Study of plasma- and detonation gun-sprayed alumina coatings using taguchi experimental design. Journal of Thermal Spray Technology, 2000, 9, 505-512.	3.1	30
121	Study of Plasma- and Detonation Gun-Sprayed Alumina Coatings Using Taguchi Experimental Design. Journal of Thermal Spray Technology, 2000, 9, 505-512.	3.1	2
122	Abrasive wear behaviour of detonation sprayed WC–Co coatings on mild steel. Surface Engineering, 1999, 15, 129-136.	2.2	23
123	Parametric influence on cut quality attributes and generation of processing maps for laser cutting. Journal of Laser Applications, 1999, 11, 54-63.	1.7	13
124	The Influence of Erosion-Induced Roughness on the Oxidation Kinetics of Ni and Ni-20Cr Alloys. Oxidation of Metals, 1999, 51, 251-272.	2.1	17
125	A Comparative Study of Tribological Behavior of Plasma and D-Gun Sprayed Coatings under Different Wear Modes. Journal of Materials Engineering and Performance, 1998, 7, 343-351.	2.5	44
126	An analysis of the transition from metal erosion to oxide erosion. Wear, 1998, 217, 312-320.	3.1	24

#	Article	IF	CITATIONS
127	Tribological behaviour of ion deposited ZrN coatings on mild steel substrate. Surface Engineering, 1997, 13, 219-222.	2.2	7
128	Solid particle erosion behaviour of metallic materials at room and elevated temperatures. Tribology International, 1997, 30, 339-359.	5.9	188
129	The sliding wear behaviour of AlSiC particulate composites—I. Macrobehaviour. Acta Materialia, 1996, 44, 451-460.	7.9	200
130	The sliding wear behaviour of Alî—,SiC particulate composites—II. The characterization of subsurface deformation and correlation with wear behaviour. Acta Materialia, 1996, 44, 461-473.	7.9	193
131	Influence of solid solution and dispersion strengthening meehanismson room temperature erosion behaviour of niekel. Materials Science and Technology, 1995, 11, 791-797.	1.6	7
132	The high speed sliding wear behaviour of boronized medium carbon steel. Surface and Coatings Technology, 1995, 73, 177-184.	4.8	98
133	The influence of plate hardness on the ballistic penetration of thick steel plates. International Journal of Impact Engineering, 1995, 16, 293-320.	5.0	78
134	The solid particle erosion of metallic materials: The rationalization of the influence of material variables. Wear, 1995, 186-187, 129-144.	3.1	43
135	The strain-rate sensitivitity of flow stress and strain-hardening rate in metallic materials. Materials Science & Science and Processing, 1994, 189, 117-127.	5.6	17
136	The solid particle erosion of polymer matrix composites. Wear, 1994, 171, 149-161.	3.1	145
137	The hardness-flow stress correlation in metallic materials. Bulletin of Materials Science, 1994, 17, 747-770.	1.7	41
138	The effect of laser surface melting on the erosion behaviour of a low alloy steel. Surface and Coatings Technology, 1993, 58, 85-92.	4.8	22
139	Effect of particle shape on the erosion of Cu and its alloys. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 1993, 165, 51-63.	5.6	36
140	The differential effect of the hardness of metallic materials on their erosion and abrasion resistance. Wear, 1993, 162-164, 773-781.	3.1	22
141	An analysis of the creep embrittlement of Inconel alloy X-750 due to its prior exposure to reduced air pressure at 1150°C. Materials at High Temperatures, 1992, 10, 227-236.	1.0	4
142	The erosion behaviour of an aluminium-lithium alloy. Scripta Metallurgica Et Materialia, 1992, 27, 937-942.	1.0	4
143	The penetration of thick steel plates by ogive shaped projectilesâ€"experiment and analysis. International Journal of Impact Engineering, 1992, 12, 373-408.	5.0	25
144	Room temperature erosion behaviour of a precipitation hardened stainless steel. Tribology International, 1992, 25, 271-280.	5.9	23

#	Article	IF	Citations
145	The effect of participate reinforcement on the sliding wear behavior of aluminum matrix composites. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1992, 23, 2833-2847.	1.4	202
146	Material deformation and fracture under impulsive loading conditions. Bulletin of Materials Science, 1992, 15, 3-25.	1.7	2
147	Effect of Clamping Rigidity of the Armour on Ballistic Performance. Defence Science Journal, 1992, 42, 117-120.	0.8	4
148	An analysis of the erosion-oxidation interaction mechanisms. Wear, 1991, 145, 251-282.	3.1	44
149	The influence of microstructure on the erosion behaviour of cast irons. Wear, 1991, 145, 283-296.	3.1	24
150	Room temperature erosion behaviour of 304, 316 and 410 stainless steels. Wear, 1991, 145, 77-100.	3.1	40
151	A comprehensive model for the solid particle erosion of ductile materials. Wear, 1991, 149, 111-127.	3.1	144
152	A dynamic indentation technique for the characterization of the high strain rate plastic flow behaviour of ductile metals and alloys. Journal of the Mechanics and Physics of Solids, 1991, 39, 243-271.	4.8	80
153	On the constraint factor associated with the indentation of work-hardening materials with a spherical ball. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1991, 22, 2375-2384.	1.4	57
154	The depth of plastic deformation beneath eroded surfaces: The influence of impact angle and velocity, particle shape and material properties. Wear, 1991, 149, 129-153.	3.1	51
155	The influence of grain size on the erosion rate of metals. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1991, 18, 1043-1052.	1.4	0
156	The erosion behavior of 304 stainless steel at elevated temperatures. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1990, 21, 3187-3199.	1.4	20
157	The energy absorbed during the oblique impact of a hard ball against ductile target materials. International Journal of Impact Engineering, 1990, 9, 343-358.	5.0	45
158	The volume of the crater formed by the impact of a ball against flat target materials— The effect of ball hardness and density. International Journal of Impact Engineering, 1990, 9, 237-246.	5.0	13
159	The nature of the elastic rebound of a hard ball impacting on ductile, metallic target materials. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1990, 124, 133-140.	5 . 6	46
160	Erosion efficiency-a new parameter to characterize the dominant erosion micromechanism. Wear, 1990, 140, 369-381.	3.1	119
161	The Monkman-Grant relationship. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1989, 112, 205-214.	5.6	53
162	The solid particle erosion of copper at very low impact velocities. Wear, 1989, 135, 95-108.	3.1	7

#	Article	lF	CITATIONS
163	An Analysis of the Effect of Environmental Damage on the Creep Fracture of Inconel Alloy X–750. , 1989, , 1851-1858.		1
164	The influence of grain size on the erosion rate of metals. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1987, 18, 1043-1052.	2.2	14
165	A new model for two-body abrasive wear based on the localization of plastic deformation. Wear, 1987, 117, 1-35.	3.1	30
166	The oblique impact of a hard ball against ductile, semi-infinite target materialsâ€"experiment and analysis. International Journal of Impact Engineering, 1987, 6, 3-22.	5.0	44
167	The effect of matrix constraint on intergranular cavity growth mechanism maps. Materials Science and Engineering, 1987, 92, 113-126.	0.1	1
168	A comprehensive analysis of the static indentation process. Materials Science and Engineering, 1987, 91, 169-180.	0.1	35
169	Evaluation of microhardness correction procedures. Wear, 1986, 110, 183-202.	3.1	4
170	Erosion behaviour of ductile materials with a spherical non-friable erodent. Wear, 1986, 111, 313-323.	3.1	36
171	The effect of stacking fault energy on the erosion behaviour of copper alloys at oblique impact. Wear, 1985, 103, 133-148.	3.1	20
172	On the correlation of erosion and wear resistance of pure metals with their mechanical and thermophysical properties. Scripta Metallurgica, 1985, 19, 347-352.	1.2	4
173	An empirical relation for the volume of the crater formed during high velocity oblique impact tests. Wear, 1984, 97, 9-16.	3.1	10
174	The effect of temperature on solid particle erosion. Wear, 1984, 98, 141-149.	3.1	8
175	Correlation between erosion behaviour and stacking fault energy in copper alloys. Acta Metallurgica, 1984, 32, 1305-1316.	2.1	34
176	The use of dynamic impact experiments in the determination of the strain rate sensitivity of metals and alloys. Acta Metallurgica, 1983, 31, 101-109.	2.1	35
177	An analysis of the localization of deformation and weight loss during single-particle normal impact. Wear, 1983, 84, 217-235.	3.1	39
178	A new model for the erosion of metals at normal incidence. Wear, 1983, 84, 237-258.	3.1	177
179	The Erosion of Metals. Annual Review of Materials Research, 1983, 13, 301-318.	5.5	62
180	The saturation of flow stress in FCC metals. Scripta Metallurgica, 1982, 16, 611-614.	1.2	10

#	Article	IF	CITATIONS
181	Preparation and Characterization of Li-Doped ZnO Nano-Sized Powders for Photocatalytic Applications. Materials Science Forum, 0, 734, 90-116.	0.3	4