
D W Schindler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10879822/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oil sands mining and reclamation cause massive loss of peatland and stored carbon. Proceedings of the United States of America, 2012, 109, 4933-4937.	7.1	203
2	Oil sands development contributes elements toxic at low concentrations to the Athabasca River and its tributaries. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16178-16183.	7.1	377
3	VII.5 Managing Nutrient Mobilization and Eutrophication. , 2009, , 712-717.		0
4	Lakes as sentinels and integrators for the effects of climate change on watersheds, airsheds, and landscapes. Limnology and Oceanography, 2009, 54, 2349-2358.	3.1	239
5	Sentinels of Change. Science, 2009, 323, 887-888.	12.6	228
6	Eutrophication: More Nitrogen Data Needed. Science, 2009, 324, 721-722.	12.6	109
7	A personal history of the Experimental Lakes ProjectThis paper is part of the series "Forty Years of Aquatic Research at the Experimental Lakes Areaâ€. Canadian Journal of Fisheries and Aquatic Sciences, 2009, 66, 1837-1847.	1.4	17
8	Reply to Bryhn and HÃ¥kanson: Models for the Baltic agree with our experiments and observations in lakes. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, .	7.1	1
9	Eutrophication of lakes cannot be controlled by reducing nitrogen input: Results of a 37-year whole-ecosystem experiment. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11254-11258.	7.1	1,354
10	The cultural eutrophication of Lac la Biche, Alberta, Canada: a paleoecological study. Canadian Journal of Fisheries and Aquatic Sciences, 2008, 65, 2211-2223.	1.4	18
11	Recent climate extremes alter alpine lake ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12927-12931.	7.1	135
12	Reply to Howarth and Paerl: Is control of both nitrogen and phosphorus necessary?. Proceedings of the United States of America, 2008, 105, .	7.1	16
13	An impending water crisis in Canada's western prairie provinces. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 7210-7216.	7.1	421
14	Forest fire increases mercury accumulation by fishes via food web restructuring and increased mercury inputs. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 19380-19385.	7.1	120
15	Recent advances in the understanding and management of eutrophication. Limnology and Oceanography, 2006, 51, 356-363.	3.1	850
16	Biological Pollutants: Alien Fishes in Mountain Lakes. Water, Air and Soil Pollution, 2002, 2, 379-397.	0.8	53
17	Melting Glaciers: A Major Source of Persistent Organochlorines to Subalpine Bow Lake in Banff National Park, Canada. Ambio, 2001, 30, 410-415.	5.5	165
18	The cumulative effects of climate warming and other human stresses on Canadian freshwaters in the new millennium. Canadian Journal of Fisheries and Aquatic Sciences, 2001, 58, 18-29.	1.4	505

#	Article	IF	CITATIONS
19	The Cumulative Effects of Climate Warming and Other Human Stresses on Canadian Freshwaters in the New Millennium. , 2001, , 165-186.		71
20	Phosphate concentrations in lakes. Nature, 2000, 406, 54-56.	27.8	238
21	Influence of nitrogen to phosphorus supply ratios and physicochemical conditions on cyanobacteria and phytoplankton species composition in the Experimental Lakes Area, Canada. Canadian Journal of Fisheries and Aquatic Sciences, 1999, 56, 451-466.	1.4	122
22	Restoration of the food web of an alpine lake following fish stocking. Limnology and Oceanography, 1999, 44, 127-136.	3.1	100
23	Title is missing!. Biogeochemistry, 1997, 36, 1-8.	3.5	95
24	Liming to Restore Acidified Lakes and Streams: A Typical Approach to Restoring Damaged Ecosystems?. Restoration Ecology, 1997, 5, 1-6.	2.9	14
25	POTENTIAL EFFECTS OF CLIMATE CHANGES ON AQUATIC SYSTEMS: LAURENTIAN GREAT LAKES AND PRECAMBRIAN SHIELD REGION. Hydrological Processes, 1997, 11, 825-871.	2.6	396
26	Disruption of sulfur cycling and acid neutralization in lakes at low pH. Biogeochemistry, 1995, 28, 115-130.	3.5	25
27	Interaction of acid rain and global changes: Effects on terrestrial and aquatic ecosystems. Water, Air, and Soil Pollution, 1995, 85, 89-99.	2.4	52
28	Direct and indirect effects of predation by a calanoid copepod (subgenus: <i>Hesperodiaptomus</i>) and of nytrients in a fishless alpine lake. Canadian Journal of Fisheries and Aquatic Sciences, 1995, 52, 2628-2638.	1.4	36
29	Chlorobornanes in Sediments and Fish 30 Years after Toxaphene Treatment of Lakes. Environmental Science & Technology, 1995, 29, 2490-2495.	10.0	44
30	High Concentrations of Toxaphene in Fishes from a Subarctic Lake. Science, 1995, 269, 240-242.	12.6	157
31	Ecosystem Experiments. Science, 1995, 269, 324-327.	12.6	262
32	Disruption of littoral algal associations by Experimental Lake acidification. Canadian Journal of Fisheries and Aquatic Sciences, 1995, 52, 2238-2250.	1.4	37
33	Historical Status of Fish Populations in Canadian Rocky Mountain Lakes Inferred from Subfossil <i>Chaoborus</i> (Diptera: Chaoboridae) Mandibles. Canadian Journal of Fisheries and Aquatic Sciences, 1994, 51, 1376-1383.	1.4	45
34	Fossil Pigment Records of Phytoplankton in Trout-stocked Alpine Lakes. Canadian Journal of Fisheries and Aquatic Sciences, 1994, 51, 2411-2423.	1.4	87
35	The biosphere as an increasing sink for atmospheric carbon: Estimates from increased nitrogen depostion. Global Biogeochemical Cycles, 1993, 7, 717-733.	4.9	177
36	Effects of Multiple Fires on Nutrient Yields from Streams Draining Boreal Forest and Fen Watersheds: Nitrogen and Phosphorus. Canadian Journal of Fisheries and Aquatic Sciences, 1992, 49, 584-596.	1.4	146

#	Article	IF	CITATIONS
37	Modification of the N : P ratio in lakes by in situ processes. Limnology and Oceanography, 1992, 37, 917-935.	3.1	66
38	A View of NAPAP from North of the Border. , 1992, 2, 124-130.		17
39	Effects of forest fire and drought on acidity of a base-poor boreal forest stream: similarities between climatic warming and acidic precipitation. Biogeochemistry, 1992, 17, 191-204.	3.5	83
40	Natural and man-caused factors affecting the abundance and cycling of dissolved organic substances in precambrian shield lakes. Hydrobiologia, 1992, 229, 1-21.	2.0	122
41	Natural and man-caused factors affecting the abundance and cycling of dissolved organic substances in precambrian shield lakes. , 1992, , 1-21.		49
42	Comments on the Sustainable Biosphere Initiative. Conservation Biology, 1991, 5, 550-551.	4.7	4
43	A comparison of the acidification efficiencies of nitric and sulfuric acids by two whole-lake addition experiments. Limnology and Oceanography, 1990, 35, 663-679.	3.1	72
44	Comparisons between experimentally- and atmospherically-acidified lakes during stress and recovery. Proceedings of the Royal Society of Edinburgh Section B Biological Sciences, 1990, 97, 193-226.	0.2	53
45	Assessing the Potential Extent of Damage to Inland Lakes in Eastern Canada due to Acidic Deposition. III. Predicted Impacts on Species Richness in Seven Groups of Aquatic Biota. Canadian Journal of Fisheries and Aquatic Sciences, 1990, 47, 821-830.	1.4	54
46	Effects of Climatic Warming on Lakes of the Central Boreal Forest. Science, 1990, 250, 967-970.	12.6	443
47	Losses of biota from American aquatic communities due to acid rain. Environmental Monitoring and Assessment, 1989, 12, 269-285.	2.7	25
48	Different interpretations of the importance of internal alkalinity generation in the alkalinity budgets of lakes and watersheds: A response to Schaffer, P. W., Hooger, R. P., Eshleman, K. N., and Church, M. R.: Water, air and soil pollut, 1988, 39, 263. Water, Air, and Soil Pollution, 1989, 47, 175-177.	2.4	5
49	Phosphorus, Nitrogen, and Carbon Dynamics of Experimental Lake 303 during Recovery from Eutrophication. Canadian Journal of Fisheries and Aquatic Sciences, 1989, 46, 2-10.	1.4	101
50	Comment on "Dynamic model of inâ€lake alkalinity generation―by L. A. Baker and P. L. Brezonik. Water Resources Research, 1988, 24, 1825-1827.	4.2	5
51	Effects of Acid Rain on Freshwater Ecosystems. Science, 1988, 239, 149-157.	12.6	590
52	Disruption of the Nitrogen Cycle in Acidified Lakes. Science, 1988, 240, 1515-1517.	12.6	85
53	Experimental studies of chemical stressors on whole lake ecosystems. Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie International Association of Theoretical and Applied Limnology, 1988, 23, 11-41.	0.1	10
54	Confusion over the origin of alkalinity in lakes. Limnology and Oceanography, 1988, 33, 1637-1640.	3.1	23

#	Article	IF	CITATIONS
55	Atmospheric Deposition of Nutrients and Major Ions at the Experimental Lakes Area in Northwestern Ontario, 1970 to 1982. Canadian Journal of Fisheries and Aquatic Sciences, 1987, 44, s206-s214.	1.4	34
56	Detecting Ecosystem Responses to Anthropogenic Stress. Canadian Journal of Fisheries and Aquatic Sciences, 1987, 44, s6-s25.	1.4	470
57	Exchange of Nutrients Between Sediments and Water After 15 Years of Experimental Eutrophication. Canadian Journal of Fisheries and Aquatic Sciences, 1987, 44, s26-s33.	1.4	72
58	Prediction of biological acid neutralization in acid-sensitive lakes. Biogeochemistry, 1987, 3, 129-140.	3.5	232
59	Sources of Alkalinity in Precambrian Shield Watersheds Under Natural Conditions and After Fire or Acidification. , 1987, , 531-548.		5
60	Biological indicators of lake acidification. Water, Air, and Soil Pollution, 1986, 30, 779-789.	2.4	45
61	The significance of in-lake production of alkalinity. Water, Air, and Soil Pollution, 1986, 30, 931-944.	2.4	112
62	A Radiotracer Study of Phosphorus Cycling in a Eutrophic Canadian Shield Lake, Lake 227, Northwestern Ontario. Canadian Journal of Fisheries and Aquatic Sciences, 1986, 43, 366-378.	1.4	55
63	Natural Sources of Acid Neutralizing Capacity in Low Alkalinity Lakes of the Precambrian Shield. Science, 1986, 232, 844-847.	12.6	156
64	The Significance of In-Lake Production of Alkalinity. , 1986, , 931-944.		0
65	Biological Indicators of Lake Acidification. , 1986, , 779-789.		13
66	Freshwaters as Waste Disposal Systems: An Interpretation of the Experimental Lakes Area, Canada Whole-Ecosystem Experiments. , 1986, , 139-163.		0
67	Acidification and alkalinization of lakes by experimental addition of nitrogen compounds. Biogeochemistry, 1985, 1, 117-133.	3.5	63
68	Long-Term Ecosystem Stress: The Effects of Years of Experimental Acidification on a Small Lake. Science, 1985, 228, 1395-1401.	12.6	467
69	Acidic deposition: Effects on aquatic ecosystems. C R C Critical Reviews in Environmental Control, 1984, 13, 167-194.	1.0	138
70	Effects of lake acidification on rates of organic matter decomposition in sediments. Limnology and Oceanography, 1984, 29, 687-694.	3.1	69
71	Decline of <i>Mysis relicta</i> During the Acidification of Lake 223. Canadian Journal of Fisheries and Aquatic Sciences, 1983, 40, 1905-1911.	1.4	50
72	Biological, chemical and physical responses of lakes to experimental acidification. Water, Air, and Soil Pollution, 1982, 18, 259-271.	2.4	111

#	Article	IF	CITATIONS
73	Biological, Chemical and Physical Responses of Lakes to Experimental Acidification. , 1982, , 259-271.		19
74	Studies of Eutrophication in Lakes and Their Relevance to the Estuarine Environment. , 1981, , 71-82.		22
75	Methane addition to an arctic lake in winter. Limnology and Oceanography, 1980, 25, 100-113.	3.1	14
76	Vertical diffusion rates determined by tritium tracer experiments in the thermocline and hypolimnion of two lakes1,2. Limnology and Oceanography, 1980, 25, 201-218.	3.1	126
77	Evolution of the Experimental Lakes Project. Canadian Journal of Fisheries and Aquatic Sciences, 1980, 37, 313-319.	1.4	29
78	Radiochemical Analysis of Orthophosphate Concentrations and Seasonal Changes in the Flux of Orthophosphate to Seston in Two Canadian Shield Lakes. Canadian Journal of Fisheries and Aquatic Sciences, 1980, 37, 479-487.	1.4	53
79	Effects of Acidification on Mobilization of Heavy Metals and Radionuclides from the Sediments of a Freshwater Lake. Canadian Journal of Fisheries and Aquatic Sciences, 1980, 37, 373-377.	1.4	183
80	Effects of a Windstorm and Forest Fire on Chemical Losses from Forested Watersheds and on the Quality of Receiving Streams. Canadian Journal of Fisheries and Aquatic Sciences, 1980, 37, 328-334.	1.4	133
81	Whole-Lake Radiocarbon Experiment in an Oligotrophic Lake at the Experimental Lakes Area, Northwestern Ontario. Canadian Journal of Fisheries and Aquatic Sciences, 1980, 37, 454-463.	1.4	56
82	Fates of Metal Radiotracers Added to a Whole Lake: Sediment–Water Interactions. Canadian Journal of Fisheries and Aquatic Sciences, 1980, 37, 378-386.	1.4	114
83	Experimental Acidification of Lake 223, Experimental Lakes Area: Background Data and the First Three Years of Acidification. Canadian Journal of Fisheries and Aquatic Sciences, 1980, 37, 342-354.	1.4	205
84	Hypolimnion Injection of Nutrient Effluents as a Method for Reducing Eutrophication. Canadian Journal of Fisheries and Aquatic Sciences, 1980, 37, 320-327.	1.4	42
85	Phosphorus Input and Its Consequences for Phytoplankton Standing Crop and Production in the Experimental Lakes Area and in Similar Lakes. Journal of the Fisheries Research Board of Canada, 1978, 35, 190-196.	0.9	148
86	Factors regulating phytoplankton production and standing crop in the world's freshwaters. Limnology and Oceanography, 1978, 23, 478-486.	3.1	463
87	Evolution of Phosphorus Limitation in Lakes. Science, 1977, 195, 260-262.	12.6	2,203
88	Natural Water and Chemical Budgets for a Small Precambrian Lake Basin in Central Canada. Journal of the Fisheries Research Board of Canada, 1976, 33, 2526-2543.	0.9	166
89	Interactions between Sediments and Overlying Waters in an Experimentally Eutrophied Pre-Cambrian Shield Lake. , 1976, , 235-243.		13
90	Whole-lake eutrophication experiments with phosphorus, nitrogen and carbon. Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie International Association of Theoretical and Applied Limnology, 1975, 19, 3221-3231.	0.1	43

#	Article	IF	CITATIONS
91	Eutrophication and Recovery in Experimental Lakes: Implications for Lake Management. Science, 1974, 184, 897-899.	12.6	831
92	BIOLOGICAL AND CHEMICAL MECHANISMS IN EUTROPHICATION OF FRESHWATER LAKES. Annals of the New York Academy of Sciences, 1974, 250, 129-135.	3.8	8
93	Iron Compounds in Lake Sediments. Canadian Journal of Earth Sciences, 1974, 11, 1489-1493.	1.3	42
94	Eutrophication of Lake 227 by Addition of Phosphate and Nitrate: the Second, Third, and Fourth Years of Enrichment, 1970, 1971, and 1972. Journal of the Fisheries Research Board of Canada, 1973, 30, 1415-1440.	0.9	152
95	Production of Epilithiphyton in Two Lakes of the Experimental Lakes Area, Northwestern Ontario. Journal of the Fisheries Research Board of Canada, 1973, 30, 1511-1524.	0.9	65
96	Diurnal Variation of Dissolved Inorganic Carbon and its Use in Estimating Primary Production and CO ₂ Invasion in Lake 227. Journal of the Fisheries Research Board of Canada, 1973, 30, 1501-1510.	0.9	118
97	Gas-Exchange Rates in a Small Lake as Determined by the Radon Method. Journal of the Fisheries Research Board of Canada, 1973, 30, 1475-1484.	0.9	51
98	Atmospheric Carbon Dioxide: Its Role in Maintaining Phytoplankton Standing Crops. Science, 1972, 177, 1192-1194.	12.6	125
99	Eutrophication of Lake 227, Experimental Lakes Area, Northwestern Ontario, by Addition of Phosphate and Nitrate. Journal of the Fisheries Research Board of Canada, 1971, 28, 1763-1782.	0.9	191
100	Geography and Bathymetry of Selected Lake Basins, Experimental Lakes Area, Northwestern Ontario. Journal of the Fisheries Research Board of Canada, 1971, 28, 139-155.	0.9	193
101	Primary Production and Phytoplankton in the Experimental Lakes Area, Northwestern Ontario, and other Low-Carbonate Waters, and a Liquid Scintillation Method for Determining ¹⁴ C Activity in Photosynthesis. Journal of the Fisheries Research Board of Canada, 1971, 28, 189-201.	0.9	161
102	A Hypothesis to Explain Differences and Similarities Among Lakes in the Experimental Lakes Area, Northwestern Ontario. Journal of the Fisheries Research Board of Canada, 1971, 28, 295-301.	0.9	103
103	Seasonal Calorific Values of Freshwater Zooplankton, as Determined with a Phillipson Bomb Calorimeter Modified for Small Samples. Journal of the Fisheries Research Board of Canada, 1971, 28, 559-564.	0.9	50
104	Light, Temperature, and Oxygen Regimes of Selected Lakes in the Experimental Lakes Area, Northwestern Ontario. Journal of the Fisheries Research Board of Canada, 1971, 28, 157-169.	0.9	93
105	CARBON, NITROGEN, AND PHOSPHORUS AND THE EUTROPHICATION OF FRESHWATER LAKES ¹ . Journal of Phycology, 1971, 7, 321-329.	2.3	154
106	Preliminary Chemical Characterization of Waters in the Experimental Lakes Area, Northwestern Ontario. Journal of the Fisheries Research Board of Canada, 1971, 28, 171-187.	0.9	137
107	CARBON, NITROGEN, AND PHOSPHORUS AND THE EUTROPHICATION OF FRESHWATER LAKES1. Journal of Phycology, 1971, 7, 321-329.	2.3	105
108	Nutrient Supply and Primary Production in Clear Lake, Eastern Ontario. Journal of the Fisheries Research Board of Canada, 1970, 27, 2009-2036.	0.9	117

#	Article	IF	CITATIONS
109	A Liquid Scintillation Method for measuring Carbon-14 Uptake in Photosynthesis. Nature, 1966, 211, 844-845.	27.8	69
110	Calorific Values of Microcrustacea. Science, 1963, 140, 1394-1396.	12.6	71