
R Stephen Lloyd

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1087967/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Initiation of Base Excision Repair: Glycosylase Mechanisms and Structures. Annual Review of Biochemistry, 1999, 68, 255-285.	11.1	363
2	MutY catalytic core, mutant and bound adenine structures define specificity for DNA repair enzyme superfamily. Nature Structural Biology, 1998, 5, 1058-1064.	9.7	297
3	The metabolic syndrome resulting from a knockout of the NEIL1 DNA glycosylase. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1864-1869.	7.1	219
4	Interstrand DNA Cross-Links Induced by α,β-Unsaturated Aldehydes Derived from Lipid Peroxidation and Environmental Sources. Accounts of Chemical Research, 2008, 41, 793-804.	15.6	161
5	Chemistry and Biology of DNA Containing 1, <i>N</i> ² -Deoxyguanosine Adducts of the α,β-Unsaturated Aldehydes Acrolein, Crotonaldehyde, and 4-Hydroxynonenal. Chemical Research in Toxicology, 2009, 22, 759-778.	3.3	155
6	Evidence for an imino intermediate in the T4 endonuclease V reaction. Biochemistry, 1993, 32, 8284-8290.	2.5	152
7	Studies on the Catalytic Mechanism of Five DNA Glycosylases. Journal of Biological Chemistry, 1995, 270, 19501-19508.	3.4	134
8	1,N 2-Deoxyguanosine Adducts of Acrolein, Crotonaldehyde, and trans-4-Hydroxynonenal Cross-link to Peptides via Schiff Base Linkage. Journal of Biological Chemistry, 2003, 278, 5970-5976.	3.4	126
9	Role for DNA Polymerase κ in the Processing of N2-N2-Guanine Interstrand Cross-links. Journal of Biological Chemistry, 2008, 283, 17075-17082.	3.4	120
10	Efficient and Error-Free Replication Past a Minor-Groove DNA Adduct by the Sequential Action of Human DNA Polymerases \hat{I}^1 and \hat{I}^{e} . Molecular and Cellular Biology, 2004, 24, 5687-5693.	2.3	114
11	8-Oxoguanine DNA Glycosylase (OGG1) Deficiency Increases Susceptibility to Obesity and Metabolic Dysfunction. PLoS ONE, 2012, 7, e51697.	2.5	108
12	Targeted deletion of the genes encoding NTH1 and NEIL1 DNA N-glycosylases reveals the existence of novel carcinogenic oxidative damage to DNA. DNA Repair, 2009, 8, 786-794.	2.8	101
13	Efficient and Error-Free Replication past a Minor-Groove N 2 -Guanine Adduct by the Sequential Action of Yeast Rev1 and DNA Polymerase I¶. Molecular and Cellular Biology, 2004, 24, 6900-6906.	2.3	99
14	Incision of DNA-protein crosslinks by UvrABC nuclease suggests a potential repair pathway involving nucleotide excision repair. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 1905-1909.	7.1	94
15	In vivo and in Vitro Replication Consequences of Stereoisomeric Benzo[a]pyrene-7,8-dihydrodiol 9,10-Epoxide Adducts on Adenine N6 at the Second Position of N-ras Codon 61. Journal of Biological Chemistry, 1995, 270, 4990-5000.	3.4	88
16	Cloning, Overexpression, and Biochemical Characterization of the Catalytic Domain of MutY. Biochemistry, 1997, 36, 11140-11152.	2.5	82
17	Translesion Synthesis past Acrolein-derived DNA Adduct, γ-Hydroxypropanodeoxyguanosine, by Yeast and Human DNA Polymerase ŀ. Journal of Biological Chemistry, 2003, 278, 784-790.	3.4	78
18	Identification of the Structural and Functional Domains of MutY, an DNA Mismatch Repair Enzyme. Journal of Biological Chemistry, 1996, 271, 16218-16226.	3.4	76

#	Article	IF	CITATIONS
19	Small Molecule Inhibitors of 8-Oxoguanine DNA Glycosylase-1 (OGG1). ACS Chemical Biology, 2015, 10, 2334-2343.	3.4	72
20	Error Prone Translesion Synthesis Past γ-Hydroxypropano Deoxyguanosine, the Primary Acrolein-derived Adduct in Mammalian Cells. Journal of Biological Chemistry, 2002, 277, 18257-18265.	3.4	70
21	Human Polymorphic Variants of the NEIL1 DNA Glycosylase. Journal of Biological Chemistry, 2007, 282, 15790-15798.	3.4	70
22	Replication Bypass of the Acrolein-Mediated Deoxyguanine DNA-Peptide Cross-Links by DNA Polymerases of the DinB Family. Chemical Research in Toxicology, 2008, 21, 1983-1990.	3.3	67
23	Initiation of Repair of DNAâ^Polypeptide Cross-Links by the UvrABC Nucleaseâ€. Biochemistry, 2005, 44, 3000-3009.	2.5	66
24	Interchain Cross-Linking of DNA Mediated by the Principal Adduct of Acrolein. Chemical Research in Toxicology, 2001, 14, 1482-1485.	3.3	65
25	Mechanisms underlying aflatoxin-associated mutagenesis – Implications in carcinogenesis. DNA Repair, 2019, 77, 76-86.	2.8	63
26	Purification and Cloning of Micrococcus luteus Ultraviolet Endonuclease, an N-Glycosylase/Abasic Lyase That Proceeds via an Imino Enzyme-DNA Intermediate. Journal of Biological Chemistry, 1995, 270, 23475-23484.	3.4	62
27	The Role of Base Flipping in Damage Recognition and Catalysis by T4 Endonuclease V. Journal of Biological Chemistry, 1997, 272, 27210-27217.	3.4	61
28	Comparative Evaluation of the Bioreactivity and Mutagenic Spectra of Acrolein-Derived α-HOPdG and γ-HOPdG Regioisomeric Deoxyguanosine Adducts. Chemical Research in Toxicology, 2003, 16, 1019-1028.	3.3	61
29	The Reaction Mechanism of DNA Glycosylase/AP Lyases at Abasic Sitesâ€. Biochemistry, 2001, 40, 561-568.	2.5	60
30	Structural Similarities between MutT and the C-Terminal Domain of MutYâ€. Biochemistry, 2000, 39, 7331-7336.	2.5	58
31	Mutagenic potential of adenine N6 adducts of monoepoxide and diolepoxide derivatives of butadiene. , 2000, 35, 48-56.		57
32	Stereospecific Formation of Interstrand Carbinolamine DNA Cross-Links by Crotonaldehyde- and Acetaldehyde-Derived α-CH3-γ-OH-1,N2-Propano-2â€~-deoxyguanosine Adducts in the 5â€~-CpG-3â€~ Sequence. Chemical Research in Toxicology, 2006, 19, 195-208.	3.3	57
33	Novel Enzymatic Function of DNA Polymerase ν in Translesion DNA Synthesis Past Major Groove DNAâ^'Peptide and DNAâ^'DNA Cross-Links. Chemical Research in Toxicology, 2010, 23, 689-695.	3.3	57
34	Processivity of uracil DNA glycosylase. Mutation Research DNA Repair, 1993, 294, 109-116.	3.7	56
35	Mammalian cell mutagenesis of the DNA adducts of vinyl chloride and crotonaldehyde. Environmental and Molecular Mutagenesis, 2005, 45, 455-459.	2.2	54
36	Characterization of a Novel cis-synandtrans-syn-IIPyrimidine Dimer Glycosylase/AP Lyase from a Eukaryotic Algal Virus, Paramecium bursaria chlorellaVirus-1. Journal of Biological Chemistry, 1998, 273, 13136-13142.	3.4	53

#	Article	IF	CITATIONS
37	The DNA Repair Protein OGG1 Protects Against Obesity by Altering Mitochondrial Energetics in White Adipose Tissue. Scientific Reports, 2018, 8, 14886.	3.3	53
38	Evidence for the Involvement of DNA Repair Enzyme NEIL1 in Nucleotide Excision Repair of (5′ <i>R</i>)- and (5′ <i>S</i>)-8,5′-Cyclo-2′-deoxyadenosines. Biochemistry, 2010, 49, 1053-1055.	2.5	50
39	Site-specific mutagenicity of stereochemically defined 1,N2-deoxyguanosine adducts oftrans-4-hydroxynonenal in mammalian cells. Environmental and Molecular Mutagenesis, 2003, 42, 68-74.	2.2	49
40	Replication Bypass of Interstrand Cross-link Intermediates by Escherichia coli DNA Polymerase IV. Journal of Biological Chemistry, 2008, 283, 27433-27437.	3.4	49
41	Involvement of Phylogenetically Conserved Acidic Amino Acid Residues in Catalysis by an Oxidative DNA Damage Enzyme Formamidopyrimidine Glycosylase. Biochemistry, 2000, 39, 15266-15271.	2.5	48
42	Mechanistic comparisons among base excision repair glycosylases3 3This article is part of a series of reviews on "Oxidative DNA Damage and Repair.―The full list of papers may be found on the homepage of the journal Free Radical Biology and Medicine, 2002, 32, 678-682.	2.9	48
43	Mutagenic potential of DNA–peptide crosslinks mediated by acrolein-derived DNA adducts. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2008, 637, 161-172.	1.0	48
44	Reaction Intermediates in the Catalytic Mechanism of Escherichia coli MutY DNA Glycosylase. Journal of Biological Chemistry, 2004, 279, 46930-46939.	3.4	47
45	Molecular basis of aflatoxin-induced mutagenesis—role of the aflatoxin B1-formamidopyrimidine adduct. Carcinogenesis, 2014, 35, 1461-1468.	2.8	47
46	Substrate Specificity and Excision Kinetics ofEscherichia coliEndonuclease VIII (Nei) for Modified Bases in DNA Damaged by Free Radicalsâ€. Biochemistry, 2001, 40, 12150-12156.	2.5	46
47	Error-prone Replication Bypass of the Primary Aflatoxin B1 DNA Adduct, AFB1-N7-Gua. Journal of Biological Chemistry, 2014, 289, 18497-18506.	3.4	44
48	NEIL1 protects against aflatoxin-induced hepatocellular carcinoma in mice. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4207-4212.	7.1	44
49	Site-directed mutagenesis of the T4 endonuclease V gene: the role of arginine-3 in the target search. Biochemistry, 1989, 28, 8699-8705.	2.5	43
50	Multiple Conformations of an Intercalated (â~')-(7S,8R,9S,10R)-N6-[10-(7,8,9,10-Tetrahydrobenzo[a]pyrenyl)]-2â€~-deoxyadenosyl Adduct in the N-ras Codon 61 Sequence. Biochemistry, 1998, 37, 16516-16528.	2.5	43
51	Determination of Active Site Residues in Escherichia coli Endonuclease VIII. Journal of Biological Chemistry, 2002, 277, 2938-2944.	3.4	43
52	Human DNA Polymerase Î ¹ Promotes Replication through a Ring-Closed Minor-Groove Adduct That Adopts a syn Conformation in DNA. Molecular and Cellular Biology, 2005, 25, 8748-8754.	2.3	43
53	DNA crossâ€link induced by <i>trans</i> â€4â€hydroxynonenal. Environmental and Molecular Mutagenesis, 2010, 51, 625-634.	2.2	43
54	Spectroscopic Characterization of Interstrand Carbinolamine Cross-Links Formed in the 5â€~-CpG-3â€~ Sequence by the Acrolein-Derived γ-OH-1,N 2-Propano-2â€~-deoxyguanosine DNA Adduct. Journal of the American Chemical Society, 2005, 127, 17686-17696.	13.7	41

#	Article	IF	CITATIONS
55	Regulation of DNA glycosylases and their role in limiting disease. Free Radical Research, 2012, 46, 460-478.	3.3	41
56	Evidence for Multiple Imino Intermediates and Identification of Reactive Nucleophiles in Peptide-Catalyzed β-Elimination at Abasic Sitesâ€. Biochemistry, 2002, 41, 7054-7064.	2.5	39
57	The Initiation of DNA Base Excision Repair of Dipyrimidine Photoproducts. Progress in Molecular Biology and Translational Science, 1998, 62, 155-175.	1.9	38
58	Mutagenic Potential of Guanine N2 Adducts of Butadiene Mono- and Diolepoxide. Chemical Research in Toxicology, 2000, 13, 18-25.	3.3	38
59	The Base Excision Repair Pathway Is Required for Efficient Lentivirus Integration. PLoS ONE, 2011, 6, e17862.	2.5	38
60	Inhibition of DNA Glycosylases via Small Molecule Purine Analogs. PLoS ONE, 2013, 8, e81667.	2.5	35
61	Mutagenic Spectrum of Butadiene-Derived N1-Deoxyinosine Adducts and N6,N6-Deoxyadenosine Intrastrand Cross-Links in Mammalian Cells. Chemical Research in Toxicology, 2002, 15, 1572-1580.	3.3	34
62	Investigations of pyrimidine dimer glycosylases — a paradigm for DNA base excision repair enzymology. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2005, 577, 77-91.	1.0	34
63	Roles of OGG1 in transcriptional regulation and maintenance of metabolic homeostasis. DNA Repair, 2019, 81, 102667.	2.8	34
64	Site-directed mutagenesis of the T4 endonuclease V gene: role of tyrosine-129 and -131 in pyrimidine dimer-specific binding. Biochemistry, 1988, 27, 1839-1843.	2.5	33
65	Site-directed mutagenesis of the T4 endonuclease V gene: role of lysine-130. Biochemistry, 1988, 27, 1832-1838.	2.5	32
66	Involvement of Glutamic Acid 23 in the Catalytic Mechanism of T4 Endonuclease V. Journal of Biological Chemistry, 1995, 270, 2652-2661.	3.4	32
67	A Comprehensive Strategy to Discover Inhibitors of the Translesion Synthesis DNA Polymerase κ. PLoS ONE, 2012, 7, e45032.	2.5	32
68	Aflatoxin-Guanine DNA Adducts and Oxidatively Induced DNA Damage in Aflatoxin-Treated Mice <i>in Vivo</i> as Measured by Liquid Chromatography-Tandem Mass Spectrometry with Isotope Dilution. Chemical Research in Toxicology, 2019, 32, 80-89.	3.3	30
69	Lack of Correlation between in Vitro and in Vivo Replication of Precisely Defined Benz[a]anthracene Adducted DNAs. Journal of Biological Chemistry, 1997, 272, 33211-33219.	3.4	29
70	Deficiency of the oxidative damage-specific DNA glycosylase NEIL1 leads to reduced germinal center B cell expansion. DNA Repair, 2009, 8, 1328-1332.	2.8	29
71	.deltaElimination by T4 Endonuclease V at a Thymine Dimer Site Requires a Secondary Binding Event and Amino Acid Glu-23. Biochemistry, 1995, 34, 8796-8803.	2.5	28
72	8-oxoguanine DNA glycosylase (OGC1) deficiency elicits coordinated changes in lipid and mitochondrial metabolism in muscle. PLoS ONE, 2017, 12, e0181687.	2.5	28

#	Article	IF	CITATIONS
73	Structural Determinants for Specific Recognition by T4 Endonuclease V. Journal of Biological Chemistry, 1996, 271, 32147-32152.	3.4	27
74	Probing Structure/Function Relationships of HIV-1 Reverse Transcriptase with Styrene Oxide N2-Guanine Adducts. Journal of Biological Chemistry, 1997, 272, 8525-8530.	3.4	27
75	Structure of T4 Pyrimidine Dimer Glycosylase in a Reduced Imine Covalent Complex with Abasic Site-containing DNA. Journal of Molecular Biology, 2006, 362, 241-258.	4.2	27
76	Replication Bypass of N2-Deoxyguanosine Interstrand Cross-Links by Human DNA Polymerases η and ι. Chemical Research in Toxicology, 2012, 25, 755-762.	3.3	26
77	Mutations in endonuclease V that affect both protein-protein association and target site location. Biochemistry, 1991, 30, 8638-8648.	2.5	25
78	The Catalytic Mechanism of a Pyrimidine Dimer-specific Glycosylase (pdg)/Abasic Lyase, chlorella virus-pdg. Journal of Biological Chemistry, 1999, 274, 9786-9794.	3.4	24
79	Translesion Synthesis Past Acrolein-derived DNA Adducts by Human Mitochondrial DNA Polymerase γ. Journal of Biological Chemistry, 2013, 288, 14247-14255.	3.4	23
80	TAT-Mediated Delivery of a DNA Repair Enzyme to Skin Cells Rapidly Initiates Repair of UV-Induced DNA Damage. Journal of Investigative Dermatology, 2011, 131, 753-761.	0.7	22
81	DNA polymerase ζ limits chromosomal damage and promotes cell survival following aflatoxin exposure. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13774-13779.	7.1	22
82	Chlorella Virus Pyrimidine Dimer Glycosylase Excises Ultraviolet Radiation– and Hydroxyl Radical–induced Products 4,6-Diamino-5-formamidopyrimidine and 2,6-Diamino-4-hydroxy-5-formamidopyrimidine from DNA¶. Photochemistry and Photobiology, 2002, 75, 85.	2.5	22
83	Intron Conservation in a UV-Specific DNA Repair Gene Encoded by Chlorella Viruses. Journal of Molecular Evolution, 2000, 50, 82-92.	1.8	21
84	Initiation of repair of A/G mismatches is modulated by sequence context. DNA Repair, 2003, 2, 863-878.	2.8	20
85	Orientation of the Crotonaldehyde-Derived N2-[3-Oxo-1(S)-methyl-propyl]-dG DNA Adduct Hinders Interstrand Cross-Link Formation in the 5â€~-CpG-3â€~ Sequence. Chemical Research in Toxicology, 2006, 19, 1019-1029.	3.3	20
86	Recognition of DNA adducts by edited and unedited forms of DNA glycosylase NEIL1. DNA Repair, 2020, 85, 102741.	2.8	20
87	Consequences of molecular engineering - enhanced DNA binding in a DNA repair enzyme. Biochemistry, 1992, 31, 4189-4198.	2.5	19
88	Impact of the Stereochemistry of Benzo[a]pyrene 7,8-Dihydrodiol 9,10-Epoxideâ^Deoxyadenosine Adducts on Resistance to Digestion by Phosphodiesterases I and II and Translesion Synthesis with HIV-1 Reverse Transcriptase. Chemical Research in Toxicology, 1996, 9, 409-417.	3.3	19
89	Point mutations induced by 1,2-epoxy-3-butene N1 deoxyinosine adducts. Environmental and Molecular Mutagenesis, 2001, 38, 292-296.	2.2	19
90	Intrastrand DNA Cross-Links as Tools for Studying DNA Replication and Repair:  Two-, Three-, and Four-Carbon Tethers between the N2 Positions of Adjacent Guanines. Biochemistry, 2002, 41, 3109-3118.	2.5	19

#	Article	IF	CITATIONS
91	Modulation of UvrD Helicase Activity by Covalent DNA-Protein Cross-links. Journal of Biological Chemistry, 2010, 285, 21313-21322.	3.4	19
92	Role of High-Fidelity Escherichia coli DNA Polymerase I in Replication Bypass of a Deoxyadenosine DNA-Peptide Cross-Link. Journal of Bacteriology, 2011, 193, 3815-3821.	2.2	19
93	OGG1 deficiency alters the intestinal microbiome and increases intestinal inflammation in a mouse model. PLoS ONE, 2020, 15, e0227501.	2.5	18
94	Role of Specific Amino Acid Residues in T4 Endonuclease V That Alter Nontarget DNA Binding. Biochemistry, 1997, 36, 4080-4088.	2.5	17
95	Mutagenic Spectra Arising from Replication Bypass of the 2,6-Diamino-4-hydroxy- <i>N</i> ⁵ -methyl Formamidopyrimidine Adduct in Primate Cells. Chemical Research in Toxicology, 2013, 26, 1108-1114.	3.3	17
96	Leukotriene Biosynthesis Inhibitor MK886 Impedes DNA Polymerase Activity. Chemical Research in Toxicology, 2013, 26, 221-232.	3.3	17
97	Catalysts of DNA Strand Cleavage at Apurinic/Apyrimidinic Sites. Scientific Reports, 2016, 6, 28894.	3.3	16
98	Evidence for Escherichia coli polymerase II mutagenic bypass of intrastrand DNA crosslinks. DNA Repair, 2005, 4, 1374-1380.	2.8	15
99	Conformational Interconversion of the trans-4-Hydroxynonenal-Derived (6S,8R,11S) 1,N2-Deoxyguanosine Adduct When Mismatched with Deoxyadenosine in DNA. Chemical Research in Toxicology, 2009, 22, 187-200.	3.3	15
100	Replication of the 2,6-Diamino-4-hydroxy- <i>N</i> ⁵ -(methyl)-formamidopyrimidine (MeFapy-dGuo) Adduct by Eukaryotic DNA Polymerases. Chemical Research in Toxicology, 2012, 25, 1652-1661.	3.3	15
101	Cytochrome <i>P</i> -450 enzymes involved in genetic polymorphism of drug oxidation in humans. Biochemical Society Transactions, 1987, 15, 576-578.	3.4	14
102	Mechanistic link between DNA methyltransferases and DNA repair enzymes by base flipping. , 1997, 44, 139-151.		14
103	Potential double-flipping mechanism by E. coli MutY. Progress in Molecular Biology and Translational Science, 2001, 68, 349-364.	1.9	14
104	Enhanced cytarabine-induced killing in OGG1-deficient acute myeloid leukemia cells. Proceedings of the United States of America, 2021, 118, .	7.1	14
105	Processing of N-substituted formamidopyrimidine DNA adducts by DNA glycosylases NEIL1 and NEIL3. DNA Repair, 2019, 73, 49-54.	2.8	13
106	Comparison of the Efficiency of Synthesis Past Single Bulky DNA AdductsinVivoandinVitroby the Polymerase III Holoenzyme. Chemical Research in Toxicology, 1996, 9, 1167-1175.	3.3	12
107	Synthesis and Mutagenesis of the Butadiene-Derived N3 2â€~-Deoxyuridine Adducts. Chemical Research in Toxicology, 2006, 19, 968-976.	3.3	12
108	Exosomal miRâ€⊋21 derived from hydroquinoneâ€transformed malignant human bronchial epithelial cells is involved in cell viability of recipient cells. Journal of Applied Toxicology, 2020, 40, 224-233.	2.8	12

#	Article	IF	CITATIONS
109	Minor Groove Orientation of the KWKK Peptide Tethered via the N-Terminal Amine to the Acrolein-Derived 1, <i>N</i> ² -γ-Hydroxypropanodeoxyguanosine Lesion with a Trimethylene Linkage,. Biochemistry, 2010, 49, 6155-6164.	2.5	11
110	Enhanced sensitivity of Neil1â^'/â^' mice to chronic UVB exposure. DNA Repair, 2016, 48, 43-50.	2.8	11
111	Modulation of UVB-induced Carcinogenesis by Activation of Alternative DNA Repair Pathways. Scientific Reports, 2018, 8, 705.	3.3	11
112	mutation of tryptophan 128 in T4 endonuclease V does not affect glycosylase or abasic site lyase activity. Biochemistry, 1994, 33, 9024-9031.	2,5	10
113	Two Glycosylase/Abasic Lyases from Neisseria mucosaThat Initiate DNA Repair at Sites of UV-induced Photoproducts. Journal of Biological Chemistry, 2000, 275, 23569-23576.	3.4	10
114	Efficient nonmutagenic replication bypass of DNAs containing ?-adducts of styrene oxide at adenine N6. Environmental and Molecular Mutagenesis, 2001, 38, 357-360.	2.2	10
115	Site-directed mutagenesis of the T4 endonuclease V Gene: Mutations which enhance enzyme specific activity at low salt concentrations. Proteins: Structure, Function and Bioinformatics, 1989, 6, 128-138.	2.6	9
116	Uncoupling of Nucleotide Flipping and DNA Bending by the T4 Pyrimidine Dimer DNA Glycosylase. Biochemistry, 2006, 45, 14192-14200.	2.5	9
117	Mutagenic potential of nitrogen mustard-induced formamidopyrimidine DNA adduct: Contribution of the non-canonical α-anomer. Journal of Biological Chemistry, 2017, 292, 18790-18799.	3.4	9
118	Characterization of rare NEIL1 variants found in East Asian populations. DNA Repair, 2019, 79, 32-39.	2.8	9
119	Conserved features of selenoprotein P cDNA. Biochemical Society Transactions, 1993, 21, 832-835.	3.4	8
120	DNA Sequence Modulates the Efficiency of NEIL1-Catalyzed Excision of the Aflatoxin B ₁ -Induced Formamidopyrimidine Guanine Adduct. Chemical Research in Toxicology, 2021, 34, 901-911.	3.3	7
121	T4 Endonuclease V: Use of NMR and Borohydride Trapping to Provide Evidence for Covalent Enzyme–Substrate Imine Intermediate. Methods in Enzymology, 2002, 354, 202-207.	1.0	6
122	Mutagenic bypass of the butadiene-derived 2′-deoxyuridine adducts by polymerases Î∙ and ζ. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2007, 625, 40-49.	1.0	6
123	Errorâ€prone replication bypass of the imidazole ringâ€opened formamidopyrimidine deoxyguanosine adduct. Environmental and Molecular Mutagenesis, 2017, 58, 182-189.	2.2	6
124	Exosomes derived from normal human bronchial epithelial cells down-regulate proliferation and migration of hydroquinone-transformed malignant recipient cells via up-regulating PTEN expression. Chemosphere, 2020, 244, 125496.	8.2	6
125	1H, 13C and 15N resonance assignments of the C-terminal domain of MutY: an adenine glycosylase active on G:A mismatches. Journal of Biomolecular NMR, 1999, 14, 385-386.	2.8	5
126	Structure of the 1,4-Bis(2â€~-deoxyadenosin-N6-yl)-2R,3R-butanediol Cross-Link Arising from Alkylation of the Human N-ras Codon 61 by Butadiene Diepoxide. Biochemistry, 2005, 44, 10081-10092.	2.5	5

#	Article	IF	CITATIONS
127	γ-Hydroxy-1,N2-propano-2′-deoxyguanosine DNA Adduct Conjugates the N-Terminal Amine of the KWKK Peptide via a Carbinolamine Linkage. Chemical Research in Toxicology, 2011, 24, 1123-1133.	3.3	5
128	Maternal Transmission of Human OGG1 Protects Mice Against Genetically- and Diet-Induced Obesity Through Increased Tissue Mitochondrial Content. Frontiers in Cell and Developmental Biology, 2021, 9, 718962.	3.7	5
129	Role of His-16 in Turnover of T4 Pyrimidine Dimer Glycosylase. Journal of Biological Chemistry, 2004, 279, 3348-3353.	3.4	4
130	Modulation of the processive abasic site lyase activity of a pyrimidine dimer glycosylase. DNA Repair, 2011, 10, 1014-1022.	2.8	4
131	Sequence context modulation of polycyclic aromatic hydrocarbonâ€induced mutagenesis. Environmental and Molecular Mutagenesis, 2013, 54, 652-658.	2.2	3
132	Inhibition by Tetrahydroquinoline Sulfonamide Derivatives of the Activity of Human 8-Oxoguanine DNA Glycosylase (OGG1) for Several Products of Oxidatively induced DNA Base Lesions. ACS Chemical Biology, 2021, 16, 45-51.	3.4	3
133	DNA glycosylase deficiency leads to decreased severity of lupus in the Polb-Y265C mouse model. DNA Repair, 2021, 105, 103152.	2.8	3
134	Polymorphic variant Asp239Tyr of human DNA glycosylase NTHL1 is inactive for removal of a variety of oxidatively-induced DNA base lesions from genomic DNA. DNA Repair, 2022, 117, 103372.	2.8	3
135	Processivity of DNA Repair Enzymes. , 2001, 160, 003-014.		2
136	Pyrosequencing: applicability for studying DNA damageâ€induced mutagenesis. Environmental and Molecular Mutagenesis, 2014, 55, 601-608.	2.2	2
137	Carbinolamine Formation and Dehydration in a DNA Repair Enzyme Active Site. PLoS ONE, 2012, 7, e31377.	2.5	1
138	Chlorella Virus Pyrimidine Dimer Glycosylase Excises Ultraviolet Radiation- and Hydroxyl Radical-induced Products 4,6-Diamino-5-formamidopyrimidine and 2,6-Diamino-4-hydroxy-5-formamidopyrimidine from DNA¶. Photochemistry and Photobiology, 2002, 75, 85-91.	2.5	0
139	Enzymes in the Base Excision Repair Pathway as Targets for Small Molecule Mediated Therapeutics. , 2017, , 663-729.		0
140	In Search of Damaged Bases. , 2005, , .		0
141	Butadiene-Mediated Mutagenesis and Carcinogenesis. , 2008, , 1-31.		0
142	Molecular mechanisms underlying aflatoxinâ€induced mutagenesis. FASEB Journal, 2013, 27, lb78.	0.5	0
143	Inhibition of HIV-1 Reverse Transcriptase-Catalyzed Synthesis by Intercalated DNA Benzo[a]Pyrene 7,8-Dihydrodiol-9,10-Epoxide Adducts. PLoS ONE, 2013, 8, e72131.	2.5	0
144	Enhanced Mitochondrial DNA Repair Confers Protection Against Obesity and Metabolic Syndrome by Altering White Adipose Tissue Energetics. FASEB Journal, 2018, 32, 670.44.	0.5	0