
Michael R Kearney

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10879436/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A hierarchical approach to understanding physiological associations with climate. Global Ecology and Biogeography, 2022, 31, 332-346.	5.8	12
2	Too hot for the devil? Did climate change cause the midâ€Holocene extinction of the Tasmanian devil <i>Sarcophilus harrisii</i> from mainland Australia?. Ecography, 2022, 2022, .	4.5	7
3	<scp>mcera5</scp> : Driving microclimate models with ERA5 global gridded climate data. Methods in Ecology and Evolution, 2022, 13, 1402-1411.	5.2	12
4	Parthenogenesis without costs in a grasshopper with hybrid origins. Science, 2022, 376, 1110-1114.	12.6	10
5	Too hot to hunt: Mechanistic predictions of thermal refuge from cat predation risk. Conservation Letters, 2022, 15, .	5.7	5
6	Three questions about the ecoâ€physiology of overwintering underground. Ecology Letters, 2021, 24, 170-185.	6.4	42
7	Modelling the joint effects of body size and microclimate on heat budgets and foraging opportunities of ectotherms. Methods in Ecology and Evolution, 2021, 12, 458-467.	5.2	13
8	What is the status of metabolic theory one century after <scp>P</scp> ütter invented the von <scp>B</scp> ertalanffy growth curve?. Biological Reviews, 2021, 96, 557-575.	10.4	26
9	A general model of the thermal constraints on the world's most destructive locust, <i>Schistocerca gregaria</i> . Ecological Applications, 2021, 31, e02310.	3.8	14
10	An endangered flightless grasshopper with strong genetic structure maintains population genetic variation despite extensive habitat loss. Ecology and Evolution, 2021, 11, 5364-5380.	1.9	18
11	Where do functional traits come from? The role of theory and models. Functional Ecology, 2021, 35, 1385-1396.	3.6	38
12	NicheMapR – an R package for biophysical modelling: the endotherm model. Ecography, 2021, 44, 1595-1605.	4.5	13
13	Grasshopper country before and after: a resurvey of Ken Key's collecting expeditions in New South Wales, Australia, 70Âyears on. Austral Entomology, 2021, 60, 52-65.	1.4	8
14	A method for computing hourly, historical, terrain orrected microclimate anywhere on earth. Methods in Ecology and Evolution, 2020, 11, 38-43.	5.2	88
15	NicheMapR – an R package for biophysical modelling: the ectotherm and Dynamic Energy Budget models. Ecography, 2020, 43, 85-96.	4.5	87
16	Dynamics of death by heat. Science, 2020, 369, 1163-1163.	12.6	10
17	Future winters present a complex energetic landscape of decreased costs and reduced risk for a freezeâ€ŧolerant amphibian, the Wood Frog (<i>Lithobates sylvaticus</i>). Global Change Biology, 2020, 26, 6350-6362.	9.5	15
18	Integrating dynamic plant growth models and microclimates for species distribution modelling. Ecological Modelling, 2020, 435, 109262.	2.5	14

#	Article	IF	CITATIONS
19	Using Biophysical Models to Improve Survey Efficiency for Cryptic Ectotherms. Journal of Wildlife Management, 2020, 84, 1185-1195.	1.8	9
20	The roles of acclimation and behaviour in buffering climate change impacts along elevational gradients. Journal of Animal Ecology, 2020, 89, 1722-1734.	2.8	30
21	Microclimate modelling of beach sand temperatures reveals high spatial and temporal variation at sea turtle rookeries. Journal of Thermal Biology, 2020, 88, 102522.	2.5	22
22	Tracheal branching in ants is area-decreasing, violating a central assumption of network transport models. PLoS Computational Biology, 2020, 16, e1007853.	3.2	10
23	How will snow alter exposure of organisms to cold stress under climate warming?. Global Ecology and Biogeography, 2020, 29, 1246-1256.	5.8	15
24	Life in the slow lane? A dynamic energy budget model for the western swamp turtle, Pseudemydura umbrina. Journal of Sea Research, 2019, 143, 89-99.	1.6	14
25	The Fundamental Niche Concept Connects Individuals to Populations: A Comment on Angilletta et al Integrative and Comparative Biology, 2019, 59, 1509-1510.	2.0	7
26	Forecasting species range dynamics with processâ€explicit models: matching methods to applications. Ecology Letters, 2019, 22, 1940-1956.	6.4	144
27	microclim <scp>US</scp> : hourly estimates of historical microclimates for the United States of America with example applications. Ecology, 2019, 100, e02829.	3.2	7
28	Modeling the distribution of niche space and risk for a freezeâ€ŧolerant ectotherm, <i>Lithobates sylvaticus</i> . Ecosphere, 2019, 10, e02788.	2.2	14
29	Linking thermal adaptation and life-history theory explains latitudinal patterns of voltinism. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180547.	4.0	20
30	Integrating mechanistic and correlative niche models to unravel rangeâ€limiting processes in a temperate amphibian. Global Change Biology, 2019, 25, 2633-2647.	9.5	52
31	The origin and maintenance of metabolic allometry in animals. Nature Ecology and Evolution, 2019, 3, 598-603.	7.8	86
32	Persistence through tough times: fixed and shifting refuges in threatened species conservation. Biodiversity and Conservation, 2019, 28, 1303-1330.	2.6	40
33	Climate is a strong predictor of near-infrared reflectance but a poor predictor of colour in butterflies. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190234.	2.6	25
34	MicroclimOz – A microclimate data set for Australia, with example applications. Austral Ecology, 2019, 44, 534-544.	1.5	7
35	Can next-generation soil data products improve soil moisture modelling at the continental scale? An assessment using a new microclimate package for the R programming environment. Journal of Hydrology, 2018, 561, 662-673.	5.4	28
36	Summer egg diapause in a matchstick grasshopper synchronizes the life cycle and buffers thermal extremes. Integrative Zoology, 2018, 13, 437-449.	2.6	12

#	Article	IF	CITATIONS
37	Geostatistical interpolation can reliably extend coverage of a very highâ€resolution model of temperatureâ€dependent sex determination. Journal of Biogeography, 2018, 45, 652-663.	3.0	4
38	An individualâ€based model of ectotherm movement integrating metabolic and microclimatic constraints. Methods in Ecology and Evolution, 2018, 9, 472-489.	5.2	40
39	The matchstick grasshopper genus Warramaba (Morabidae: Morabinae): a description of four new species and a photographic guide to the group. Zootaxa, 2018, 4482, 201-244.	0.5	3
40	Reflection of near-infrared light confers thermal protection in birds. Nature Communications, 2018, 9, 3610.	12.8	47
41	Too much hot air? Informing ethical trapping in hot, dry environments. Wildlife Research, 2018, 45, 16.	1.4	5
42	Field tests of a general ectotherm niche model show how water can limit lizard activity and distribution. Ecological Monographs, 2018, 88, 672-693.	5.4	74
43	Advances in Monitoring and Modelling Climate at Ecologically Relevant Scales. Advances in Ecological Research, 2018, , 101-161.	2.7	146
44	The effect of egg size on hatch time and metabolic rate: theoretical and empirical insights on developing insect embryos. Functional Ecology, 2017, 31, 227-234.	3.6	11
45	The universality of the von Bertalanffy growth curve. Physics of Life Reviews, 2017, 20, 63-65.	2.8	2
46	NicheMapR – an R package for biophysical modelling: the microclimate model. Ecography, 2017, 40, 664-674.	4.5	192
47	Novel applications of thermocyclers for phenotyping invertebrate thermal responses. Methods in Ecology and Evolution, 2016, 7, 1201-1208.	5.2	14
48	Unpacking the mechanisms captured by a correlative species distribution model to improve predictions of climate refugia. Global Change Biology, 2016, 22, 2425-2439.	9.5	91
49	Color Change for Thermoregulation versus Camouflage in Free-Ranging Lizards. American Naturalist, 2016, 188, 668-678.	2.1	65
50	Mechanistic models for predicting insect responses to climate change. Current Opinion in Insect Science, 2016, 17, 81-86.	4.4	50
51	Climate and Fire Scenario Uncertainty Dominate the Evaluation of Options for Conserving the Great Desert Skink. Conservation Letters, 2016, 9, 181-190.	5.7	10
52	Too hot to handle? Balancing increased trapability with capture mortality in hot weather pitfall trapping. Austral Ecology, 2016, 41, 918-926.	1.5	5
53	An estimate of the water budget for the endangered night parrot of Australia under recent and future climates. Climate Change Responses, 2016, 3, .	2.6	25
54	Colour change on different body regions provides thermal and signalling advantages in bearded dragon lizards. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160626.	2.6	57

#	Article	IF	CITATIONS
55	Reptile embryos and climate change: Modelling limits of viability to inform translocation decisions. Biological Conservation, 2016, 204, 134-147.	4.1	33
56	One lump or two? Explaining a major latitudinal transition in reproductive allocation in a viviparous lizard. Functional Ecology, 2016, 30, 1373-1383.	3.6	14
57	Testing mechanistic models of growth in insects. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20151973.	2.6	29
58	Ontogenetic and interspecific scaling of consumption in insects. Oikos, 2015, 124, 1564-1570.	2.7	26
59	Modeling behavioral thermoregulation in a climate change sentinel. Ecology and Evolution, 2015, 5, 5810-5822.	1.9	34
60	A dynamic energy budget for the whole life ycle of holometabolous insects. Ecological Monographs, 2015, 85, 353-371.	5.4	50
61	Dynamic Energy Budget Theory: An Efficient and General Theory for Ecology. BioScience, 2015, 65, 341-341.	4.9	18
62	Morphology and burrowing energetics of semi-fossorial skinks (<i>Liopholis</i>). Journal of Experimental Biology, 2015, 218, 2416-26.	1.7	40
63	Has contemporary climate change played a role in population declines of the lizard Ctenophorus decresii from semi-arid Australia?. Journal of Thermal Biology, 2015, 54, 66-77.	2.5	18
64	Climateâ€related spatial and temporal variation in bill morphology over the past century in Australian parrots. Journal of Biogeography, 2015, 42, 1163-1175.	3.0	45
65	Predicting climate warming effects on green turtle hatchling viability and dispersal performance. Functional Ecology, 2015, 29, 768-778.	3.6	44
66	Bergmann meets Scholander: geographical variation in body size and insulation in the koala is related to climate. Journal of Biogeography, 2015, 42, 791-802.	3.0	33
67	Models of primary sex ratios at a major flatback turtle rookery show an anomalous masculinising trend. Climate Change Responses, 2014, 1, .	2.6	15
68	Realized niche shift during a global biological invasion. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10233-10238.	7.1	238
69	Ontogenetic and Interspecific Metabolic Scaling in Insects. American Naturalist, 2014, 184, 695-701.	2.1	36
70	Microclimate modelling at macro scales: a test of a general microclimate model integrated with gridded continentalâ€scale soil and weather data. Methods in Ecology and Evolution, 2014, 5, 273-286.	5.2	107
71	Sensitivity to thermal extremes in Australian <i>Drosophila</i> implies similar impacts of climate change on the distribution of widespread and tropical species. Global Change Biology, 2014, 20, 1738-1750.	9.5	181
72	Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5610-5615.	7.1	906

#	Article	IF	CITATIONS
73	Metabolic Scaling in Animals: Methods, Empirical Results, and Theoretical Explanations. , 2014, 4, 231-256.		147
74	Tree-hugging koalas demonstrate a novel thermoregulatory mechanism for arboreal mammals. Biology Letters, 2014, 10, 20140235.	2.3	99
75	Reconciling theories for metabolic scaling. Journal of Animal Ecology, 2014, 83, 20-29.	2.8	81
76	microclim: Global estimates of hourly microclimate based on long-term monthly climate averages. Scientific Data, 2014, 1, 140006.	5.3	160
77	A replicated comparison of breedingâ€container suitability for the dengue vector <i>Aedes aegypti</i> in tropical and temperate Australia. Austral Ecology, 2013, 38, 219-229.	1.5	8
78	Activity restriction and the mechanistic basis for extinctions under climate warming. Ecology Letters, 2013, 16, 1470-1479.	6.4	127
79	Determinants of inter-specific variation in basal metabolic rate. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2013, 183, 1-26.	1.5	172
80	Balancing heat, water and nutrients under environmental change: a thermodynamic niche framework. Functional Ecology, 2013, 27, 950-966.	3.6	110
81	Predicting species distributions for conservation decisions. Ecology Letters, 2013, 16, 1424-1435.	6.4	1,375
82	Linking Eco-Energetics and Eco-Hydrology to Select Sites for the Assisted Colonization of Australia's Rarest Reptile. Biology, 2013, 2, 1-25.	2.8	61
83	Biomechanics meets the ecological niche: the importance of temporal data resolution. Journal of Experimental Biology, 2012, 215, 922-933.	1.7	102
84	A physiological analogy of the niche for projecting the potential distribution of plants. Journal of Biogeography, 2012, 39, 2132-2145.	3.0	68
85	Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 1665-1679.	4.0	1,049
86	The trade-off between maturation and growth during accelerated development in frogs. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2012, 163, 95-102.	1.8	32
87	Testing Metabolic Theories. American Naturalist, 2012, 180, 546-565.	2.1	74
88	Stageâ€dependent physiological responses in a butterfly cause nonâ€additive effects on phenology. Oikos, 2012, 121, 1464-1472.	2.7	30
89	A Manipulative Test of Competing Theories for Metabolic Scaling. American Naturalist, 2011, 178, 746-754.	2.1	65
90	Thermal Sensitivity of Aedes aegypti From Australia: Empirical Data and Prediction of Effects on Distribution. Journal of Medical Entomology, 2011, 48, 914-923.	1.8	39

#	Article	IF	CITATIONS
91	The "covariation method―for estimating the parameters of the standard Dynamic Energy Budget model I: Philosophy and approach. Journal of Sea Research, 2011, 66, 270-277.	1.6	160
92	The "covariation method―for estimating the parameters of the standard Dynamic Energy Budget model II: Properties and preliminary patterns. Journal of Sea Research, 2011, 66, 278-288.	1.6	76
93	Declining body size: a third universal response to warming?. Trends in Ecology and Evolution, 2011, 26, 285-291.	8.7	845
94	Mechanisms and consequences of changing body size: reply to Bickford et al. and McCauley and Mabry. Trends in Ecology and Evolution, 2011, 26, 555-556.	8.7	2
95	Excluding access to invasion hubs can contain the spread of an invasive vertebrate. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 2900-2908.	2.6	80
96	Early emergence in a butterfly causally linked to anthropogenic warming. Biology Letters, 2010, 6, 674-677.	2.3	68
97	Correlative and mechanistic models of species distribution provide congruent forecasts under climate change. Conservation Letters, 2010, 3, 203-213.	5.7	376
98	Predicting the fate of a living fossil: how will global warming affect sex determination and hatching phenology in tuatara?. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 2185-2193.	2.6	171