Sandra Tenreiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1087578/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Retinal Progression Biomarkers of Early and Intermediate Age-Related Macular Degeneration. Life, 2022, 12, 36.	2.4	9
2	Choroidal Vascular Impairment in Intermediate Age-Related Macular Degeneration. Diagnostics, 2022, 12, 1290.	2.6	2
3	Macular Vascular Imaging and Connectivity Analysis Using High-Resolution Optical Coherence Tomography. Translational Vision Science and Technology, 2022, 11, 2.	2.2	10
4	Age-Related Macular Degeneration: Pathophysiology, Management, and Future Perspectives. Ophthalmologica, 2021, 244, 495-511.	1.9	48
5	Formation of Lipofuscin-Like Autofluorescent Granules in the Retinal Pigment Epithelium Requires Lysosome Dysfunction. , 2021, 62, 39.		6
6	A biophysical perspective on the unexplored mechanisms driving Parkinson's disease by amphetamine-like stimulants. Neural Regeneration Research, 2021, 16, 2213.	3.0	1
7	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq1 1 0.784314 rgBT /O	verlock 10 9.1	Tf 50 502 To 1,430
8	CORRELATION STUDY BETWEEN DRUSEN MORPHOLOGY AND FUNDUS AUTOFLUORESCENCE. Retina, 2021, 41, 555-562.	1.7	2
9	Neuroprotection or Neurotoxicity of Illicit Drugs on Parkinson's Disease. Life, 2020, 10, 86.	2.4	8
10	Transfer of extracellular vesicleâ€micro <scp>RNA</scp> controls germinal center reaction and antibody production. EMBO Reports, 2020, 21, e48925.	4.5	46
11	The synthetic cannabinoid JWH-018 modulates Saccharomyces cerevisiae energetic metabolism. FEMS Yeast Research, 2019, 19, .	2.3	2
12	Identification of novel protein phosphatases as modifiers of alpha-synuclein aggregation in yeast. FEMS Yeast Research, 2018, 18, .	2.3	4
13	(Poly)phenol-digested metabolites modulate alpha-synuclein toxicity by regulating proteostasis. Scientific Reports, 2018, 8, 6965.	3.3	20
14	Yeast models of Parkinson's disease-associated molecular pathologies. Current Opinion in Genetics and Development, 2017, 44, 74-83.	3.3	49
15	Phycocyanin protects against Alpha-Synuclein toxicity in yeast. Journal of Functional Foods, 2017, 38, 553-560.	3.4	9
16	Analysis of Protein Oligomeric Species by Sucrose Gradients. Methods in Molecular Biology, 2016, 1449, 331-339.	0.9	1
17	The effects of the novel A53E alpha-synuclein mutation on its oligomerization and aggregation. Acta Neuropathologica Communications, 2016, 4, 128.	5.2	35
18	Yeast reveals similar molecular mechanisms underlying alpha- and beta-synuclein toxicity. Human Molecular Genetics, 2016, 25, 275-290.	2.9	29

SANDRA TENREIRO

#	Article	IF	CITATIONS
19	Parkinson Disease Mutant E46K Enhances α-Synuclein Phosphorylation in Mammalian Cell Lines, in Yeast, and in Vivo. Journal of Biological Chemistry, 2015, 290, 9412-9427.	3.4	52
20	(Poly)phenols protect from α-synuclein toxicity by reducing oxidative stress and promoting autophagy. Human Molecular Genetics, 2015, 24, 1717-1732.	2.9	66
21	From the baker to the bedside: yeast models of Parkinson's disease. Microbial Cell, 2015, 2, 262-279.	3.2	59
22	A levedura como modelo para estudar as bases moleculares da doença de Parkinson. Revista Brasileira De Ciências Do Envelhecimento Humano, 2015, 12, .	0.0	1
23	Integration of Single Cell Traps, Chemical Gradient Generator and Photosensors in a Microfluidic Platform for the Study of Alpha-Synuclein Toxicity in Yeast. Procedia Engineering, 2014, 87, 92-95.	1.2	Ο
24	Phosphorylation Modulates Clearance of Alpha-Synuclein Inclusions in a Yeast Model of Parkinson's Disease. PLoS Genetics, 2014, 10, e1004302.	3.5	114
25	Modulation of alpha-synuclein toxicity in yeast using a novel microfluidic-based gradient generator. Lab on A Chip, 2014, 14, 3949-3957.	6.0	33
26	DJ-1 interactions with α-synuclein attenuate aggregation and cellular toxicity in models of Parkinson's disease. Cell Death and Disease, 2014, 5, e1350-e1350.	6.3	130
27	Protein phosphorylation in neurodegeneration: friend or foe?. Frontiers in Molecular Neuroscience, 2014, 7, 42.	2.9	203
28	PLK2 Modulates α-Synuclein Aggregation in Yeast and Mammalian Cells. Molecular Neurobiology, 2013, 48, 854-862.	4.0	37
29	Inhibition of formation of α-synuclein inclusions by mannosylglycerate in a yeast model of Parkinson's disease. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 4065-4072.	2.4	43
30	Harnessing the power of yeast to unravel the molecular basis of neurodegeneration. Journal of Neurochemistry, 2013, 127, 438-452.	3.9	82
31	High-throughput study of alpha-synuclein expression in yeast using microfluidics for control of local cellular microenvironment. Biomicrofluidics, 2012, 6, 014109.	2.4	11
32	SNCA (α-synuclein)-induced toxicity in yeast cells is dependent on Sir2-mediated mitophagy. Autophagy, 2012, 8, 1494-1509.	9.1	113
33	Identification of targets and mechanisms of resistance to imatinib and quinine using a molecular systems biology approach. , 2011, , .		0
34	Visualization of cell-to-cell transmission of mutant huntingtin oligomers. PLOS Currents, 2011, 3, RRN1210.	1.4	74
35	Yeast response and tolerance to polyamine toxicity involving the drug : H+ antiporter Qdr3 and the transcription factors Yap1 and Gcn4. Microbiology (United Kingdom), 2011, 157, 945-956.	1.8	36
36	Impaired Proteostasis Contributes to Renal Tubular Dysgenesis. PLoS ONE, 2011, 6, e20854.	2.5	6

SANDRA TENREIRO

#	Article	IF	CITATIONS
37	Simple is good: yeast models of neurodegeneration. FEMS Yeast Research, 2010, 10, 970-979.	2.3	77
38	Transcriptomic Profiling of the <i>Saccharomyces cerevisiae</i> Response to Quinine Reveals a Glucose Limitation Response Attributable to Drug-Induced Inhibition of Glucose Uptake. Antimicrobial Agents and Chemotherapy, 2009, 53, 5213-5223.	3.2	21
39	Saccharomyces cerevisiae Multidrug Resistance Transporter Qdr2 Is Implicated in Potassium Uptake, Providing a Physiological Advantage to Quinidine-Stressed Cells. Eukaryotic Cell, 2007, 6, 134-142.	3.4	48
40	YEASTRACT-DISCOVERER: new tools to improve the analysis of transcriptional regulatory associations in Saccharomyces cerevisiae. Nucleic Acids Research, 2007, 36, D132-D136.	14.5	140
41	Adaptive response to the antimalarial drug artesunate in yeast involves Pdr1p/Pdr3p-mediated transcriptional activation of the resistance determinantsTPO1andPDR5. FEMS Yeast Research, 2006, 6, 1130-1139.	2.3	38
42	The YEASTRACT database: a tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae. Nucleic Acids Research, 2006, 34, D446-D451.	14.5	421
43	The yeast multidrug transporter Qdr3 (Ybr043c): localization and role as a determinant of resistance to quinidine, barban, cisplatin, and bleomycin. Biochemical and Biophysical Research Communications, 2005, 327, 952-959.	2.1	43
44	Saccharomyces cerevisiae Multidrug Transporter Qdr2p (Yil121wp): Localization and Function as a Quinidine Resistance Determinant. Antimicrobial Agents and Chemotherapy, 2004, 48, 2531-2537.	3.2	45
45	Saccharomyces cerevisiae Aqr1 Is an Internal-Membrane Transporter Involved in Excretion of Amino Acids. Eukaryotic Cell, 2004, 3, 1492-1503.	3.4	76
46	Dtr1p, a Multidrug Resistance Transporter of the Major Facilitator Superfamily, Plays an Essential Role in Spore Wall Maturation in Saccharomyces cerevisiae. Eukaryotic Cell, 2002, 1, 799-810.	3.4	74
47	AQR1 Gene (ORF YNL065w) Encodes a Plasma Membrane Transporter of the Major Facilitator Superfamily That Confers Resistance to Short-Chain Monocarboxylic Acids and Quinidine in Saccharomyces cerevisiae. Biochemical and Biophysical Research Communications, 2002, 292, 741-748.	2.1	73
48	The multidrug resistance transporters of the major facilitator superfamily, 6 years after disclosure of Saccharomyces cerevisiae genome sequence. Journal of Biotechnology, 2002, 98, 215-226.	3.8	65
49	Transcriptional Activation of FLR1 Gene during Saccharomyces cerevisiae Adaptation to Growth with Benomyl: Role of Yap1p and Pdr3p. Biochemical and Biophysical Research Communications, 2001, 280, 216-222.	2.1	40
50	Resistance and Adaptation to Quinidine in Saccharomyces cerevisiae : Role of QDR1 (YIL120w), Encoding a Plasma Membrane Transporter of the Major Facilitator Superfamily Required for Multidrug Resistance. Antimicrobial Agents and Chemotherapy, 2001, 45, 1528-1534.	3.2	40
51	Expression of theAZR1 gene (ORF YGR224w), encoding a plasma membrane transporter of the major facilitator superfamily, is required for adaptation to acetic acid and resistance to azoles inSaccharomyces cerevisiae. Yeast, 2000, 16, 1469-1481.	1.7	91
52	FLR1 gene (ORF YBR008c) is required for benomyl and methotrexate resistance inSaccharomyces cerevisiae and its benomyl-induced expression is dependent on Pdr3 transcriptional regulator. Yeast, 1999, 15, 1595-1608.	1.7	78
53	FLR1 gene (ORF YBR008c) is required for benomyl and methotrexate resistance in Saccharomyces cerevisiae and its benomylâ€induced expression is dependent on Pdr3 transcriptional regulator. Yeast, 1999, 15, 1595-1608.	1.7	0
54	Thermonema rossianum sp. nov., a New Thermophilic and Slightly Halophilic Species from Saline Hot Springs in Naples, Italy. International Journal of Systematic Bacteriology, 1997, 47, 122-126.	2.8	46

#	Article	IF	CITATIONS
55	Fatty Composition of the Species of the Genera Thermus Acid Meiothermus. Systematic and Applied Microbiology, 1996, 19, 303-311.	2.8	37
56	Thermus silvanus sp. nov. and Thermus chliarophilus sp. nov., Two New Species Related to Thermus ruber but with Lower Growth Temperatures. International Journal of Systematic Bacteriology, 1995, 45, 633-639.	2.8	56
57	DNA:DNA hybridization and chemotaxonomic studies of Thermus scotoductus. Research in Microbiology, 1995, 146, 315-324.	2.1	19
58	Polar lipids and fatty acid composition ofThermus strains from New Zealand. Antonie Van Leeuwenhoek, 1994, 66, 357-363.	1.7	21