
Alberto Oliverio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10874775/publications.pdf Version: 2024-02-01

ALREPTO OLIVERIO

#	Article	IF	CITATIONS
1	Flexible use of allocentric and egocentric spatial memories activates differential neural networks in mice. Scientific Reports, 2020, 10, 11338.	3.3	19
2	A gene expression atlas for different kinds of stress in the mouse brain. Scientific Data, 2020, 7, 437.	5.3	34
3	Phosphorylation of S845 GluA1 AMPA receptors modulates spatial memory and structural plasticity in the ventral striatum. Brain Structure and Function, 2015, 220, 2653-2661.	2.3	13
4	Impairing effect of amphetamine and concomitant ionotropic glutamate receptors blockade in the ventral striatum on spatial learning in mice. Psychopharmacology, 2013, 227, 651-660.	3.1	1
5	Dopamine–Clutamate Interplay in the Ventral Striatum Modulates Spatial Learning in a Receptor Subtype-Dependent Manner. Neuropsychopharmacology, 2012, 37, 1122-1133.	5.4	20
6	Spatial memory, plasticity and nucleus accumbens. Reviews in the Neurosciences, 2012, 23, 527-41.	2.9	24
7	Stress induces region specific alterations in microRNAs expression in mice. Behavioural Brain Research, 2010, 208, 265-269.	2.2	140
8	Metabotropic Glutamate Receptors 5 Blockade Reverses Spatial Memory Deficits in a Mouse Model of Parkinson's Disease. Neuropsychopharmacology, 2009, 34, 729-738.	5.4	55
9	Daniel Bovet and his role in the development of psychobiology. Medicina Nei Secoli, 2008, 20, 891-905.	0.1	1
10	Effects of intra-accumbens NMDA and AMPA receptor antagonists on short-term spatial learning in the Morris water maze task. Behavioural Brain Research, 2007, 179, 43-49.	2.2	32
11	Spatial deficits in a mouse model of Parkinson disease. Psychopharmacology, 2007, 194, 517-525.	3.1	68
12	Co-activation of glutamate and dopamine receptors within the nucleus accumbens is required for spatial memory consolidation in mice. Psychopharmacology, 2005, 179, 108-116.	3.1	29
13	A study on the role of the dorsal striatum and the nucleus accumbens in allocentric and egocentric spatial memory consolidation. Learning and Memory, 2005, 12, 491-503.	1.3	50
14	Studying memory and learning at the University of Rome ?La Sapienza? and at the National Research Council. Cognitive Processing, 2004, 5, 54-56.	1.4	0
15	Distinct roles of the different ionotropic glutamate receptors within the nucleus accumbens in passive-avoidance learning and memory in mice. European Journal of Neuroscience, 2003, 18, 2365-2373.	2.6	28
16	Effects of intra-accumbens focal administrations of glutamate antagonists on object recognition memory in mice. Behavioural Brain Research, 2003, 138, 153-163.	2.2	61
17	Differential Involvement of NMDA and AMPA Receptors Within the Nucleus Accumbens in Consolidation of Information Necessary for Place Navigation and Guidance Strategy of Mice. Learning and Memory, 2003, 10, 285-292.	1.3	42
18	Pharmacological evidence of the role of dorsal striatum in spatial memory consolidation in mice Behavioral Neuroscience, 2003, 117, 685-694.	1.2	15

#	Article	IF	CITATIONS
19	Genetics, behaviour and psychiatry: historical burdens and perspective. Medicina Nei Secoli, 2003, 15, 1-15.	0.1	0
20	NMDA and AMPA Antagonist Infusions into the Ventral Striatum Impair Different Steps of Spatial Information Processing in a Nonassociative Task in Mice. Journal of Neuroscience, 2001, 21, 2143-2149.	3.6	69
21	In vivo gene therapy of metachromatic leukodystrophy by lentiviral vectors: correction of neuropathology and protection against learning impairments in affected mice. Nature Medicine, 2001, 7, 310-316.	30.7	198
22	N -Methyl- D -aspartate receptors in the nucleus accumbensâ‹are involved in detection of spatial novelty in mice. Psychopharmacology, 1998, 137, 175-183.	3.1	52
23	Amygdala lesions block the effect of cocaine on memory in mice. Brain Research, 1996, 713, 286-289.	2.2	20
24	Effects of the NMDA-antagonist, MK-801, on stress-induced alterations of dopamine dependent behavior. Psychopharmacology, 1995, 117, 313-317.	3.1	8
25	Nonhuman behavioral models in the genetics of disturbed behavior. Journal of Psychiatric Research, 1992, 26, 367-382.	3.1	17
26	Effects of acute and chronic stress and of genotype on oxotremorine-induced locomotor depression of mice. Behavioral and Neural Biology, 1991, 55, 123-130.	2.2	7
27	Different levels of acetylcholinesterase and choline acetyltransferase activities in C57Bl/6 and DBA/2 mice are not accompanied with different density of cortical acetylcholinesterase reactive fibers. Neurochemical Research, 1990, 15, 1127-1133.	3.3	15
28	Genotype-Dependent Adaptation of Brain Dopamine System to Stress. , 1990, , 171-182.		2
29	Stress-induced decrease of 3-methoxytyramine in the nucleus accumbens of the mouse is prevented by naltrexone pretreatment. Life Sciences, 1989, 45, 1031-1037.	4.3	23
30	Effects of immobilization stress on dopamine and its metabolites in different brain areas of the mouse: role of genotype and stress duration. Brain Research, 1988, 441, 153-160.	2.2	96
31	Age-dependent differences in cholinergic drug response in two strains of mice. Neuroscience Letters, 1988, 84, 335-338.	2.1	14
32	Chronic stress reduces the analgesic but not the stimulant effect of morphine in mice. Brain Research, 1986, 380, 357-358.	2.2	16
33	A genetic analysis of stereotypy in the mouse: Dopaminergic plasticity following chronic stress. Behavioral and Neural Biology, 1985, 44, 239-248.	2.2	41
34	Chronic stress enhances apomorphine-induced stereotyped behavior in mice: Involvement of endogenous opioids. Brain Research, 1984, 298, 138-140.	2.2	83
35	Psychobiology of Opioids. International Review of Neurobiology, 1984, 25, 277-337.	2.0	55
36	Social isolation: Effects on pain threshold and stress-induced analgesia. Pharmacology Biochemistry and Behavior, 1983, 19, 679-681.	2.9	73

#	Article	IF	CITATIONS
37	Anticonvulsant effects of stress: role of endogenous opioids. Brain Research, 1983, 271, 193-195.	2.2	37
38	Psychopharmacogenetics of opioids. Trends in Pharmacological Sciences, 1983, 4, 350-352.	8.7	31
39	Genes and Behavior: An Evolutionary Perspective. Advances in the Study of Behavior, 1983, 13, 191-217.	1.6	15
40	A Comparative Approach to Behavioral Development. , 1983, , 21-38.		0
41	An analysis of single-gene effects on audible and ultrasonic vocalizations in the mouse. Behavioral and Neural Biology, 1982, 36, 197-203.	2.2	18
42	Circadian variations in stress-induced analgesia. Brain Research, 1982, 252, 373-376.	2.2	31
43	Behavioural data on dermorphins in mice. European Journal of Pharmacology, 1982, 82, 223-227.	3.5	23
44	Dopamine receptors in the striatum and limbic system of various strains of mice: Relation to differences in responses to apomorphine. Pharmacology Biochemistry and Behavior, 1982, 17, 1115-1118.	2.9	33
45	Cross-tolerance between D-amino acids and morphine in mice. Brain Research, 1981, 212, 227-229.	2.2	13
46	Development of morphine-induced changes of activity in the mouse. Developmental Brain Research, 1981, 2, 602-605.	1.7	14
47	Differential effects of opiate agonists-antagonists on morphine-induced hyperexcitability and analgesia in mice. Psychopharmacology, 1981, 73, 134-136.	3.1	37
48	Different effects of apomorphine on locomotor activity in C57BL/6 and DBA/2 mice. Pharmacology Biochemistry and Behavior, 1981, 14, 741-743.	2.9	33
49	Behavioral Effects of Opiates: A Pharmacogenetic Analysis. , 1981, 6, 45-64.		12
50	Effects of L- and D-amino acids on analgesia and locomotor activity of mice: their interaction with morphine. Brain Research, 1980, 198, 249-252.	2.2	32
51	Ontogeny of behavioral development, arousal and stereotypes in two strains of mice. Experimental Aging Research, 1979, 5, 335-350.	1.2	16
52	Wheel running and sleep in two strains of mice: Plasticity and rigidity in the expression of circadian rhythmicity. Brain Research, 1979, 163, 121-133.	2.2	52
53	USES OF RECOMBINANT INBRED LINES. , 1979, , 197-218.		11
54	Imprinting to light-dark cycles or rearing in constant light affect circadian locomotor rhythm of mice. Neuroscience Letters, 1978, 9, 93-96.	2.1	11

#	Article	IF	CITATIONS
55	Motor activity and alcohol: Genetic analysis in the mouse. Physiology and Behavior, 1976, 16, 577-581.	2.1	45
56	Early malnutrition and postnatal changes in brain and behavior in the mouse. Brain Research, 1976, 101, 317-325.	2.2	37
57	Morphine-induced running and analgesia in two strains of mice following septal lesions or modification of brain amines. Naunyn-Schmiedeberg's Archives of Pharmacology, 1975, 288, 355-370.	3.0	28
58	Morphine sensitivity and tolerance: A genetic investigation in the mouse. Psychopharmacology, 1975, 42, 219-224.	3.1	57
59	A genetic analysis of morphine-induced running and analgesia in the mouse. Psychopharmacology, 1975, 41, 197-200.	3.1	71
60	Effects of genetic and nutritional factors on post-natal reflex and behavioral development in the mouse. Experimental Aging Research, 1975, 1, 41-56.	1.2	18
61	Maze Learning: A Genetic Investigation in the Mouse. Psychological Reports, 1975, 36, 703-712.	1.7	10
62	Genotype or prenatal drug experience affect brain maturation in the mouse. Brain Research, 1975, 90, 357-360.	2.2	18
63	Genotype-dependent electroencephalographic, behavioral and analgesic correlates of morphine: An analysis in normal mice and in mice with septal lesions. Brain Research, 1975, 83, 135-141.	2.2	15
64	Exploratory Activity: Genetic Analysis of its Modification by Various Pharmacologic Agents. , 1975, , 99-126.		6
65	Genotype-dependent sensitivity and tolerance to morphine and heroin: Dissociation between opiate-induced running and analgesia in the mouse. Psychopharmacology, 1974, 39, 13-22.	3.1	187
66	Experience modifies morphine-induced behavioural excitation of mice. Nature, 1974, 252, 229-230.	27.8	25
67	Evolutionary mechanisms in behaviour: An intraspecific genetic approach. Journal of Human Evolution, 1974, 3, 1-18.	2.6	4
68	Decreased sensitivity of septal mice to impairment of two-way avoidance by chlorpromazine. Psychopharmacology, 1973, 29, 13-20.	3.1	8
69	Exploratory activity: Genetic analysis of its modification by scopolamine and amphetamine. Physiology and Behavior, 1973, 10, 893-899.	2.1	188
70	An analysis of single-gene effects on avoidance, maze, wheel running, and exploratory behavior in the mouse. Behavioral Biology, 1973, 8, 771-783.	2.2	36
71	Genotype-dependent effects of septal lesions on different types of learning in the mouse Journal of Comparative and Physiological Psychology, 1973, 82, 240-246.	1.8	35
72	Genetic analysis of avoidance, maze, and wheel-running behaviors in the mouse Journal of Comparative and Physiological Psychology, 1972, 79, 459-473.	1.8	108

#	Article	IF	CITATIONS
73	Relations between avoidance and activity: A diallel study in mice. Behavioral Biology, 1972, 7, 733-742.	2.2	39
74	Genetic variations and heritability in a measure of avoidance learning in mice Journal of Comparative and Physiological Psychology, 1971, 74, 390-397.	1.8	21
75	Effects of scopolamine on avoidance conditioning and habituation of mice. Psychopharmacology, 1968, 12, 214-226.	3.1	57
76	Memory and consolidation mechanisms in avoidance learning of inbred mice. Brain Research, 1968, 10, 168-182.	2.2	43
77	Effects of cross-fostering on emotional and learning behavior of different strains of rats Life Sciences, 1968, 7, 799-806.	4.3	7
78	Transfer of avoidance learning in different strains of inbred mice. Life Sciences, 1968, 7, 1157-1162.	4.3	3
79	Effects of nicotine and strychnine on transfer of avoidance learning in the mouse. Life Sciences, 1968, 7, 1163-1167.	4.3	16
80	Effects of Different Conditioning Schedules Based on Visual and Acoustic Conditioned Stimulus on Avoidance Learning of Two Strains of Mice. Journal of Psychology: Interdisciplinary and Applied, 1967, 65, 131-139.	1.6	12
81	Contrasting effects of scopolamine on mice trained simultaneously with two different schedules of avoidance conditioning. Psychopharmacology, 1967, 11, 39-51.	3.1	41
82	Effects of post trial administration of drugs on avoidance learning of mice. Life Sciences, 1966, 5, 1309-1315.	4.3	63
83	Short and long term memory in two inbred strains of mice. Life Sciences, 1966, 5, 415-420.	4.3	21
84	Effects of nicotine on avoidance conditioning of inbred strains of mice. Psychopharmacology, 1966, 10, 1-5.	3.1	82