
Jean-Luc Dubois

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10872677/publications.pdf Version: 2024-02-01

IEAN-LUC DUROIS

#	Article	lF	CITATIONS
1	Fluidized bed poly(methyl methacrylate) thermolysis to methyl methacrylate followed by catalytic hydrolysis to methacrylic acid. Applied Catalysis A: General, 2022, 638, 118637.	4.3	5
2	Review on Alternative Route to Acrolein through Oxidative Coupling of Alcohols. Catalysts, 2021, 11, 229.	3.5	2
3	Risk Analysis on PMMA Recycling Economics. Polymers, 2021, 13, 2724.	4.5	30
4	Acrolein production by oxidative coupling of alcohols over zinc and cobalt aluminate spinels enlightened by adsorption calorimetry study. Catalysis Today, 2021, , .	4.4	0
5	Oxidative coupling of a mixture of bio-alcohols to produce a more sustainable acrolein: An in depth look in the mechanism implying aldehydes co-adsorption and acid/base sites. Applied Catalysis B: Environmental, 2020, 268, 118421.	20.2	9
6	Sustainable acrolein production from bio-alcohols on spinel catalysts: Influence of magnesium substitution by various transition metals (Fe, Zn, Co, Cu, Mn). Applied Catalysis A: General, 2020, 608, 117871.	4.3	9
7	Progress in Reaction Mechanisms and Reactor Technologies for Thermochemical Recycling of Poly(methyl methacrylate). Polymers, 2020, 12, 1667.	4.5	62
8	A method for quick capital cost estimation of biorefineries beyond the state of the art. Biofuels, Bioproducts and Biorefining, 2020, 14, 1061-1088.	3.7	10
9	Synthesis of acrolein by oxidative coupling of alcohols over spinel catalysts: microcalorimetric and spectroscopic approaches. Catalysis Science and Technology, 2020, 10, 1889-1901.	4.1	7
10	Economic risk assessment using Monte Carlo simulation for the production of azelaic acid and pelargonic acid from vegetable oils. Industrial Crops and Products, 2020, 150, 112411.	5.2	11
11	Coupling Rhodiumâ€Catalyzed Hydroformylation of 10â€Undecenitrile with Organic Solvent Nanofiltration: Toluene Solution versus Solventâ€Free Processes. ChemPlusChem, 2019, 84, 1744-1760.	2.8	4
12	Cs, V, Cu Keggin-type catalysts partially oxidize 2-methyl-1,3-propanediol to methacrylic acid. Applied Catalysis A: General, 2018, 554, 105-116.	4.3	19
13	Oxidative Cleavage of Fatty Acid Derivatives for Monomer Synthesis. Catalysts, 2018, 8, 464.	3.5	30
14	Catalysis for the synthesis of methacrylic acid and methyl methacrylate. Chemical Society Reviews, 2018, 47, 7703-7738.	38.1	123
15	Acrolein production from methanol and ethanol mixtures over La- and Ce-doped FeMo catalysts. Applied Catalysis B: Environmental, 2018, 237, 149-157.	20.2	10
16	Rhodium-Biphephos-Catalyzed Tandem Isomerization–Hydroformylation of Oleonitrile. Catalysts, 2018, 8, 21.	3.5	7
17	Insights in the Rhodium-Catalyzed Tandem Isomerization-Hydroformylation of 10-Undecenitrile: Evidence for a Fast Isomerization Regime. Catalysts, 2018, 8, 148.	3.5	4
18	Catalytic glycerol hydrogenolysis to 1,3-propanediol in a gas–solid fluidized bed. RSC Advances, 2017, 7, 3853-3860.	3.6	47

JEAN-LUC DUBOIS

#	Article	IF	CITATIONS
19	Influence of Catalyst Acid/Base Properties in Acrolein Production by Oxidative Coupling of Ethanol and Methanol. ChemSusChem, 2017, 10, 1916-1930.	6.8	19
20	Molybdate/Antimonate as Key Metal Oxide Catalysts for Acrolein Ammoxidation to Acrylonitrile. Catalysis Letters, 2017, 147, 2826-2834.	2.6	2
21	A Comparative Study of Basic, Amphoteric, and Acidic Catalysts in the Oxidative Coupling of Methanol and Ethanol for Acrolein Production. ChemSusChem, 2017, 10, 3459-3472.	6.8	16
22	Gas phase oxidation of 2-methyl-1,3-propanediol to methacrylic acid over heteropolyacid catalysts. Catalysis Science and Technology, 2016, 6, 6525-6535.	4.1	18
23	Partial oxidation of 2-methyl-1,3-propanediol to methacrylic acid: experimental and neural network modeling. RSC Advances, 2016, 6, 114123-114134.	3.6	16
24	Ammoxidation of acrolein to acrylonitrile over bismuth molybdate catalysts. Applied Catalysis A: General, 2016, 520, 7-12.	4.3	16
25	Coke promoters improve acrolein selectivity in the gas-phase dehydration of glycerol to acrolein. Applied Catalysis A: General, 2016, 522, 80-89.	4.3	29
26	Reductive Amination of Aldehyde Ester from Vegetable Oils to Produce Amino Ester in the Presence of Anhydrous Ammonia. ChemistrySelect, 2016, 1, 2004-2008.	1.5	4
27	Earlyâ€Stage Capital Cost Estimation of Biorefinery Processes: A Comparative Study of Heuristic Techniques. ChemSusChem, 2016, 9, 2284-2297.	6.8	79
28	Gas phase dehydration of glycerol to acrolein: Coke on WO3/TiO2 reduces by-products. Journal of Molecular Catalysis A, 2016, 421, 146-155.	4.8	33
29	Ruthenium-catalyzed hydroformylation of the functional unsaturated fatty nitrile 10-undecenitrile. Journal of Molecular Catalysis A, 2016, 417, 116-121.	4.8	14
30	Cross metathesis of bio-sourced fatty nitriles with acrylonitrile. Monatshefte Für Chemie, 2015, 146, 1107-1113.	1.8	17
31	Crossâ€metathesis of fatty acid methyl esters with acrolein: An entry to a variety of bifunctional compounds. European Journal of Lipid Science and Technology, 2015, 117, 209-216.	1.5	18
32	Rhodium versus Iridium Catalysts in the Controlled Tandem Hydroformylation–Isomerization of Functionalized Unsaturated Fatty Substrates. ChemCatChem, 2015, 7, 513-520.	3.7	20
33	Transient acrolein selectivity and carbon deposition study of glycerol dehydration over WO3/TiO2 catalyst. Chemical Engineering Journal, 2015, 270, 557-563.	12.7	48
34	Crossâ€Metathesis of Biosourced Fatty Acid Derivatives: A Step Further Toward Improved Reactivity. ChemSusChem, 2015, 8, 1143-1146.	6.8	27
35	Ruthenium catalyzed ethenolysis of renewable oleonitrile. European Journal of Lipid Science and Technology, 2014, 116, 1583-1589.	1.5	19
36	Highly productive iron molybdate mixed oxides and their relevant catalytic properties for direct synthesis of 1,1-dimethoxymethane from methanol. Applied Catalysis B: Environmental, 2014, 145, 126-135.	20.2	63

JEAN-LUC DUBOIS

#	Article	IF	CITATIONS
37	Examination of acid–base properties of solid catalysts for gas phase dehydration of glycerol: FTIR and adsorption microcalorimetry studies. Catalysis Today, 2014, 226, 167-175.	4.4	36
38	Sustainable route to methyl-9-hydroxononanoate (polymer precursor) by oxidative cleavage of fatty acid methyl ester from rapeseed oil. Green Chemistry, 2014, 16, 96-101.	9.0	31
39	Rhodiumâ€Catalyzed Tandem Isomerization/Hydroformylation of the Bioâ€Sourced 10â€Undecenenitrile: Selective and Productive Catalysts for Production of Polyamideâ€12 Precursor. Advanced Synthesis and Catalysis, 2013, 355, 3191-3204.	4.3	31
40	Detoxification of castor meal through reactive seed crushing. Industrial Crops and Products, 2013, 43, 194-199.	5.2	19
41	Glycerol conversion to acrylonitrile by consecutive dehydration over WO3/TiO2 and ammoxidation over Sb-(Fe,V)-O. Applied Catalysis B: Environmental, 2013, 132-133, 170-182.	20.2	65
42	Ammoniation-Dehydration of Fatty Acids into Nitriles: Heterogeneous or Homogeneous Catalysis?. ChemSusChem, 2013, 6, 1478-1489.	6.8	25
43	Rhodiumâ€Catalyzed Homogeneous and Aqueous Biphasic Hydroformylation of the Acrolein Acetal 2â€Vinylâ€5â€Methylâ€1,3â€Dioxane. ChemCatChem, 2013, 5, 1562-1569.	3.7	9
44	Glycerol dehydration over calcium phosphate catalysts: Effect of acidic–basic features on catalytic performance. Applied Catalysis A: General, 2012, 447-448, 124-134.	4.3	69
45	Ruthenium–Benzylidenes and Ruthenium–Indenylidenes as Efficient Catalysts for the Hydrogenation of Aliphatic Nitriles into Primary Amines. ChemCatChem, 2012, 4, 1911-1916.	3.7	46
46	Selective oxidation of ethanol towards a highly valuable product over industrial and model catalysts. Biofuels, 2012, 3, 25-34.	2.4	17
47	Tandem Catalytic Acrylonitrile Crossâ€Metathesis and Hydrogenation of Nitriles with Ruthenium Catalysts: Direct Access to Linear α,ï‰â€Aminoesters from Renewables. ChemSusChem, 2012, 5, 1410-1414.	6.8	59
48	Influence of surface acid–base properties of zirconia and titania based catalysts on the product selectivity in gas phase dehydration of glycerol. Catalysis Communications, 2012, 17, 23-28.	3.3	55
49	Electro-oxidation of hydrolysed poly-oxymethylene-dimethylether on PtRu supported catalysts. Electrochimica Acta, 2011, 56, 1460-1465.	5.2	21
50	Catalytic Oxidative Dehydration of Glycerol over a Catalyst with Iron Oxide Domains Embedded in an Iron Orthovanadate Phase. ChemSusChem, 2010, 3, 1383-1389.	6.8	48
51	Catalytic performance of vanadium pyrophosphate oxides (VPO) in the oxidative dehydration of glycerol. Applied Catalysis A: General, 2010, 376, 25-32.	4.3	133
52	Direct conversion of methanol into 1,1-dimethoxymethane: remarkably high productivity over an FeMo catalyst placed under unusual conditions. Green Chemistry, 2010, 12, 1722.	9.0	37
53	Catalytic dehydration of glycerol over vanadium phosphate oxides in the presence of molecular oxygen. Journal of Catalysis, 2009, 268, 260-267.	6.2	194
54	Renewable materials as precursors of linear nitrile-acid derivatives viacross-metathesis of fatty esters and acids with acrylonitrile and fumaronitrile. Green Chemistry, 2009, 11, 152-155.	9.0	118

JEAN-LUC DUBOIS

#	Article	IF	CITATIONS
55	Amorphous oxide as a novel efficient catalyst for direct selective oxidation of methanol to dimethoxymethane. Chemical Communications, 2008, , 865-867.	4.1	40
56	Selective oxidation of hydrocarbons and the global warming problem. Catalysis Today, 2005, 99, 5-14.	4.4	26
57	Strategy in achieving propane selective oxidation over multi-functional Mo-based oxide catalysts. Journal of Molecular Catalysis A, 2004, 220, 67-76.	4.8	59
58	Synergy between Stable Carbonates and Yttria in Selective Catalytic Oxidation of Methane. Chemistry Letters, 1991, 20, 1089-1092.	1.3	18
59	Surface Studies of La203 Based OCM Catalysts by XPS: Does Surface Peroxycarbonate Play an Important Role in Catalyst Selectivity?. Studies in Surface Science and Catalysis, 1991, 61, 107-114.	1.5	2
60	X-Ray Fhotoelectron Spectroscopic Studies of Lanthanum Oxide Based Oxidative Coupling of Methane Catalysts. Chemistry Letters, 1990, 19, 967-970.	1.3	46
61	Common features of oxidative coupling of methane cofeed catalysts. Applied Catalysis, 1990, 67, 49-71.	0.8	116
62	Oxidative coupling of methane over thoria based catalysts. Applied Catalysis, 1990, 67, 73-79.	0.8	27