Virginia Strati

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1087095/publications.pdf

Version: 2024-02-01

516710 642732 42 626 16 23 h-index citations g-index papers 51 51 51 807 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Comprehensive geoneutrino analysis with Borexino. Physical Review D, 2020, 101, .	4.7	42
2	Calibration strategy of the JUNO experiment. Journal of High Energy Physics, 2021, 2021, 1.	4.7	39
3	Accuracy of Flight Altitude Measured with Low-Cost GNSS, Radar and Barometer Sensors: Implications for Airborne Radiometric Surveys. Sensors, 2017, 17, 1889.	3.8	33
4	Soil moisture as a potential variable for tracking and quantifying irrigation: A case study with proximal gamma-ray spectroscopy data. Advances in Water Resources, 2020, 136, 103502.	3.8	33
5	Reference worldwide model for antineutrinos from reactors. Physical Review D, 2015, 91, .	4.7	32
6	Modelling Soil Water Content in a Tomato Field: Proximal Gamma Ray Spectroscopy and Soil–Crop System Models. Agriculture (Switzerland), 2018, 8, 60.	3.1	28
7	Biomass water content effect on soil moisture assessment via proximal gamma-ray spectroscopy. Geoderma, 2019, 335, 69-77.	5.1	25
8	Investigating the potentialities of Monte Carlo simulation for assessing soil water content via proximal gamma-ray spectroscopy. Journal of Environmental Radioactivity, 2018, 192, 105-116.	1.7	24
9	Correlation of gaseous emissions to water stress in tomato and maize crops: From field to laboratory and back. Sensors and Actuators B: Chemical, 2020, 303, 127227.	7.8	24
10	A multivariate spatial interpolation of airborne \hat{I}^3 -ray data using the geological constraints. Remote Sensing of Environment, 2013, 137, 1-11.	11.0	23
11	A century of oil and gas exploration in Albania: Assessment of Naturally Occurring Radioactive Materials (NORMs). Chemosphere, 2015, 139, 30-39.	8.2	22
12	Embedded readout electronics R&D for the large PMTs in the JUNO experiment. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 985, 164600.	1.6	21
13	Calibration of HPGe detectors using certified reference materials of natural origin. Journal of Radioanalytical and Nuclear Chemistry, 2016, 307, 1507-1517.	1.5	20
14	Regional study of the Archean to Proterozoic crust at the Sudbury Neutrino Observatory (SNO+), Ontario: Predicting the geoneutrino flux. Geochemistry, Geophysics, Geosystems, 2014, 15, 3925-3944.	2.5	17
15	Distillation and stripping pilot plants for the JUNO neutrino detector: Design, operations and reliability. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 925, 6-17.	1.6	17
16	Total natural radioactivity, Veneto (Italy). Journal of Maps, 2015, 11, 545-551.	2.0	16
17	Uranium distribution in the Variscan Basement of Northeastern Sardinia. Journal of Maps, 2016, 12, 1029-1036.	2.0	16
18	Exploring atmospheric radon with airborne gamma-ray spectroscopy. Atmospheric Environment, 2017, 170, 259-268.	4.1	16

#	Article	IF	CITATIONS
19	GIGJ: A Crustal Gravity Model of the Guangdong Province for Predicting the Geoneutrino Signal at the JUNO Experiment. Journal of Geophysical Research: Solid Earth, 2019, 124, 4231-4249.	3.4	16
20	Nanoseconds Timing System Based on IEEE 1588 FPGA Implementation. IEEE Transactions on Nuclear Science, 2019, 66, 1151-1158.	2.0	15
21	Rain rate and radon daughters' activity. Atmospheric Environment, 2020, 238, 117728.	4.1	15
22	The design and sensitivity of JUNO's scintillator radiopurity pre-detector OSIRIS. European Physical Journal C, 2021, 81, 1.	3.9	15
23	Expected geoneutrino signal at JUNO. Progress in Earth and Planetary Science, 2015, 2, .	3.0	13
24	Radioactivity control strategy for the JUNO detector. Journal of High Energy Physics, 2021, 2021, 1.	4.7	13
25	FIRST STEP TOWARDS THE GEOGRAPHICAL DISTRIBUTION OF INDOOR RADON IN DWELLINGS IN ALBANIA. Radiation Protection Dosimetry, 2016, 172, 488-495.	0.8	12
26	Total natural radioactivity, Tuscany, Italy. Journal of Maps, 2013, 9, 438-443.	2.0	11
27	JUNO sensitivity to low energy atmospheric neutrino spectra. European Physical Journal C, 2021, 81, 1.	3.9	11
28	Perceiving the Crust in 3â€D: A Model Integrating Geological, Geochemical, and Geophysical Data. Geochemistry, Geophysics, Geosystems, 2017, 18, 4326-4341.	2.5	10
29	Airborne Gamma-Ray Spectroscopy for Modeling Cosmic Radiation and Effective Dose in the Lower Atmosphere. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56, 823-834.	6.3	8
30	Neutrino physics with an opaque detector. Communications Physics, 2021, 4, .	5.3	8
31	Geoneutrinos and reactor antineutrinos at SNO+. Journal of Physics: Conference Series, 2016, 718, 062003.	0.4	6
32	Geoneutrinos and geoscience: an intriguing joint-venture. Rivista Del Nuovo Cimento, 2022, 45, 1-105.	5.7	6
33	Combining Precision Viticulture Technologies and Economic Indices to Sustainable Water Use Management. Water (Switzerland), 2022, 14, 1493.	2.7	6
34	Charge reconstruction in large-area photomultipliers. Journal of Instrumentation, 2018, 13, P02008-P02008.	1.2	3
35	Training Future Engineers to Be Ghostbusters: Hunting for the Spectral Environmental Radioactivity. Education Sciences, 2019, 9, 15.	2.6	3
36	An Easily Integrable Industrial System for Gamma Spectroscopic Analysis and Traceability of Stones and Building Materials. Sensors, 2021, 21, 352.	3.8	3

#	Article	IF	CITATIONS
37	Proximal Gamma-Ray Spectroscopy: An Effective Tool to Discern Rain from Irrigation. Remote Sensing, 2021, 13, 4103.	4.0	3
38	Geoneutrinos from the rock overburden at SNO+. Journal of Physics: Conference Series, 2020, 1342, 012020.	0.4	1
39	Sustainable Water Management: Sensors for Precision Farming. Proceedings (mdpi), 2017, 1, 780.	0.2	O
40	Discriminating irrigation and rainfall with proximal gamma-ray spectroscopy. , 2020, , .		0
41	Editorial: Innovative Methods for Non-invasive Monitoring of Hydrological Processes From Field to Catchment Scale. Frontiers in Water, 2021, 3, .	2.3	O
42	FPGA Implementation of an NCO Based CDR for the JUNO Front-End Electronics. IEEE Transactions on Nuclear Science, 2021, 68, 1952-1960.	2.0	0