
Kiyoshi Takatsu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10865378/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Isoliquiritigenin Attenuates Adipose Tissue Inflammation and Metabolic Syndrome by Modifying Gut Bacteria Composition in Mice. Molecular Nutrition and Food Research, 2022, 66, e2101119.	3.3	13
2	Bidirectional crosstalk between neutrophils and adipocytes promotes adipose tissue inflammation. FASEB Journal, 2019, 33, 11821-11835.	0.5	46
3	Metabolism and biochemical properties of nicotinamide adenine dinucleotide (NAD) analogs, nicotinamide guanine dinucleotide (NGD) and nicotinamide hypoxanthine dinucleotide (NHD). Scientific Reports, 2019, 9, 13102.	3.3	20
4	Elimination of eosinophils using anti-IL-5 receptor alpha antibodies effectively suppresses IL-33-mediated pulmonary arterial hypertrophy. Immunobiology, 2018, 223, 486-492.	1.9	11
5	A subset of cerebrovascular pericytes originates from mature macrophages in the very early phase of vascular development in CNS. Scientific Reports, 2017, 7, 3855.	3.3	73
6	Eplerenone prevented obesity-induced inflammasome activation and glucose intolerance. Journal of Endocrinology, 2017, 235, 179-191.	2.6	51
7	Allergic diseases: From bench to clinic - Contribution of the discovery of interleukin-5. Cytokine, 2017, 98, 59-70.	3.2	68
8	CD206+ M2-like macrophages regulate systemic glucose metabolism by inhibiting proliferation of adipocyte progenitors. Nature Communications, 2017, 8, 286.	12.8	178
9	Funiculosin variants and phosphorylated derivatives promote innate immune responses via the Toll-like receptor 4/myeloid differentiation factor-2 complex. Journal of Biological Chemistry, 2017, 292, 15378-15394.	3.4	4
10	lsoliquiritigenin: A Unique Component That Attenuates Adipose Tissue Inflammation and Fibrosis by Targeting the Innate Immune Sensors. , 2017, , .		0
11	Prolonged activation of IL-5–producing ILC2 causes pulmonary arterial hypertrophy. JCI Insight, 2017, 2, e90721.	5.0	19
12	Fetal Lymphoid Progenitors Become Restricted to B-1 Fates Coincident with IL-7Rα Expression. PLoS ONE, 2016, 11, e0165676.	2.5	0
13	Inflammatory responses increase secretion of MD-1 protein. International Immunology, 2016, 28, 503-512.	4.0	9
14	HIF-1α in Myeloid Cells Promotes Adipose Tissue Remodeling Toward Insulin Resistance. Diabetes, 2016, 65, 3649-3659.	0.6	81
15	Isoliquiritigenin Attenuates Adipose Tissue Inflammation in vitro and Adipose Tissue Fibrosis through Inhibition of Innate Immune Responses in Mice. Scientific Reports, 2016, 6, 23097.	3.3	75
16	Deletion of SIRT1 in myeloid cells impairs glucose metabolism with enhancing inflammatory response to adipose tissue hypoxia. Diabetology International, 2016, 7, 59-68.	1.4	7
17	Glycyrrhetinic acid inhibits contact hypersensitivity induced by trichophytin via dectinâ€1. Experimental Dermatology, 2016, 25, 299-304.	2.9	15
18	Interferonâ€ <i>γ</i> constrains cytokine production of group 2 innate lymphoid cells. Immunology, 2016, 147_21-29	4.4	32

#	Article	IF	CITATIONS
19	Potential Therapeutic Natural Products for the Treatment of Obesity-Associated Chronic Inflammation by Targeting TLRs and Inflammasomes. , 2016, , 379-397.		0
20	Inflammation-induced endothelial cell-derived extracellular vesicles modulate the cellular status of pericytes. Scientific Reports, 2015, 5, 8505.	3.3	134
21	Increased production of intestinal immunoglobulins in Syntenin-1-deficient mice. Immunobiology, 2015, 220, 597-604.	1.9	16
22	Differential requirements of MyD88 and TRIF pathways in TLR4-mediated immune responses in murine B cells. Immunology Letters, 2015, 163, 22-31.	2.5	19
23	Emerging roles of IL-33 in inflammation and immune regulation. Inflammation and Regeneration, 2015, 35, 069-077.	3.7	0
24	<i>Lnk/Sh2b3</i> Controls the Production and Function of Dendritic Cells and Regulates the Induction of IFN-γ–Producing T Cells. Journal of Immunology, 2014, 193, 1728-1736.	0.8	34
25	Lnk prevents inflammatory CD8 ⁺ Tâ€cell proliferation and contributes to intestinal homeostasis. European Journal of Immunology, 2014, 44, 1622-1632.	2.9	20
26	lsoliquiritigenin is a potent inhibitor of NLRP3 inflammasome activation and diet-induced adipose tissue inflammation. Journal of Leukocyte Biology, 2014, 96, 1087-1100.	3.3	171
27	Revisiting the Identification and cDNA Cloning of T Cell-Replacing Factor/Interleukin-5. Frontiers in Immunology, 2014, 5, 639.	4.8	1
28	Deficiency of Nicotinamide Mononucleotide Adenylyltransferase 3 (Nmnat3) Causes Hemolytic Anemia by Altering the Glycolytic Flow in Mature Erythrocytes. Journal of Biological Chemistry, 2014, 289, 14796-14811.	3.4	68
29	Role of the Immune System in Obesity-Associated Inflammation and Insulin Resistance. , 2014, , 281-293.		1
30	Roles of IL-5-producing group 2 innate lymphoid cells in eosinophil regulation. Inflammation and Regeneration, 2014, 34, 140-148.	3.7	0
31	Inhibition of antibody production <i>in vivo</i> by pre-stimulation of Toll-like receptor 4 before antigen priming is caused by defective B-cell priming and not impairment in antigen presentation. International Immunology, 2013, 25, 117-128.	4.0	7
32	Interleukin-5 Plays a Key Role in Mouse Strain- Dependent Susceptibility to Contact Hypersensitivity through Its Effects on Initiator B Cells. International Archives of Allergy and Immunology, 2013, 161, 98-106.	2.1	8
33	The TLR family protein RP105/MD-1 complex. Adipocyte, 2013, 2, 61-66.	2.8	26
34	Activation and Regulation of the Pattern Recognition Receptors in Obesity-Induced Adipose Tissue Inflammation and Insulin Resistance. Nutrients, 2013, 5, 3757-3778.	4.1	65
35	Identification of Innate IL-5–Producing Cells and Their Role in Lung Eosinophil Regulation and Antitumor Immunity. Journal of Immunology, 2012, 188, 703-713.	0.8	258
36	The Radioprotective 105/MD-1 Complex Contributes to Diet-Induced Obesity and Adipose Tissue Inflammation. Diabetes, 2012, 61, 1199-1209.	0.6	43

#	Article	IF	CITATIONS
37	The RP105/MD-1 complex is indispensable for TLR4/MD-2-dependent proliferation and IgM-secreting plasma cell differentiation of marginal zone B cells. International Immunology, 2012, 24, 389-400.	4.0	26
38	Tetrameric Interaction of the Ectoenzyme CD38 on the Cell Surface Enables Its Catalytic and Raft-Association Activities. Structure, 2012, 20, 1585-1595.	3.3	31
39	Analysis of Trichophyton antigen-induced contact hypersensitivity in mouse. Journal of Dermatological Science, 2012, 66, 144-153.	1.9	27
40	Structural basis of interleukinâ€5 dimer recognition by its α receptor. Protein Science, 2012, 21, 850-864.	7.6	57
41	Glycyrrhizin and isoliquiritigenin suppress the LPS sensor Toll-like receptor 4/MD-2 complex signaling in a different manner. Journal of Leukocyte Biology, 2012, 91, 967-976.	3.3	88
42	Serum soluble MD-1 levels increase with disease progression in autoimmune prone MRLlpr/lpr mice. Molecular Immunology, 2012, 49, 611-620.	2.2	12
43	Protective immunity afforded by attenuated, PhoP <i>â€</i> deficient <i>Mycobacterium tuberculosis</i> is associated with sustained generation of CD4 ⁺ Tâ€cell memory. European Journal of Immunology, 2012, 42, 385-392.	2.9	46
44	Interleukin-5 and IL-5 receptor in health and diseases. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2011, 87, 463-485.	3.8	175
45	Telmisartan Improves Insulin Resistance and Modulates Adipose Tissue Macrophage Polarization in High-Fat-Fed Mice. Endocrinology, 2011, 152, 1789-1799.	2.8	91
46	Local microbleeding facilitates IL-6– and IL-17–dependent arthritis in the absence of tissue antigen recognition by activated T cells. Journal of Experimental Medicine, 2011, 208, 103-114.	8.5	95
47	<i>Mycobacterium tuberculosis</i> Synergizes with ATP To Induce Release of Microvesicles and Exosomes Containing Major Histocompatibility Complex Class II Molecules Capable of Antigen Presentation. Infection and Immunity, 2010, 78, 5116-5125.	2.2	102
48	Suppressed induction of mycobacterial antigen-specific Th1-type CD4+ T cells in the lung after pulmonary mycobacterial infection. International Immunology, 2010, 22, 307-318.	4.0	16
49	Pathogen-specific regulatory T cells delay the arrival of effector T cells in the lung during early tuberculosis. Journal of Experimental Medicine, 2010, 207, 1409-1420.	8.5	281
50	Lnk regulates integrin αIIbβ3 outside-in signaling in mouse platelets, leading to stabilization of thrombus development in vivo. Journal of Clinical Investigation, 2010, 120, 179-190.	8.2	84
51	Establishment of humanized anti-interleukin-5 receptor alpha chain monoclonal antibodies having a potent neutralizing activity. Human Antibodies, 2009, 18, 17-27.	1.5	46
52	IL-5- and eosinophil-mediated inflammation: from discovery to therapy. International Immunology, 2009, 21, 1303-1309.	4.0	315
53	Identification of the human eosinophil lineage-committed progenitor: revision of phenotypic definition of the human common myeloid progenitor. Journal of Experimental Medicine, 2009, 206, 183-193.	8.5	166
54	Regulatory Mechanisms for Adipose Tissue M1 and M2 Macrophages in Diet-Induced Obese Mice. Diabetes, 2009, 58, 2574-2582.	0.6	619

#	Article	IF	CITATIONS
55	Expression of IL-5Rα on B-1 cell progenitors in mouse fetal liver and involvement of Bruton's tyrosine kinase in their development. Immunology Letters, 2009, 123, 169-178.	2.5	8
56	Toll-like receptor 7 cooperates with IL-4 in activated B cells through antigen receptor or CD38 and induces class switch recombination and IgG1 production. Molecular Immunology, 2009, 46, 1278-1288.	2.2	30
57	Chapter 6 Interleukin 5 in the Link Between the Innate and Acquired Immune Response. Advances in Immunology, 2009, 101, 191-236.	2.2	99
58	IL-5 and eosinophilia. Current Opinion in Immunology, 2008, 20, 288-294.	5.5	272
59	Growth and maturation of megakaryocytes is regulated by Lnk/Sh2b3 adaptor protein through crosstalk between cytokine- and integrin-mediated signals. Experimental Hematology, 2008, 36, 897-906.	0.4	40
60	Alteration of enzymatic properties of cell-surface antigen CD38 by agonistic anti-CD38 antibodies that prolong B cell survival and induce activation. International Immunopharmacology, 2008, 8, 59-70.	3.8	7
61	CpG ODN mediated prevention from ovalbumin-induced anaphylaxis in mouse through B cell pathway. International Immunopharmacology, 2008, 8, 351-361.	3.8	29
62	Initiation of the adaptive immune response to <i>Mycobacterium tuberculosis</i> depends on antigen production in the local lymph node, not the lungs. Journal of Experimental Medicine, 2008, 205, 105-115.	8.5	480
63	Oct2 enhances antibody-secreting cell differentiation through regulation of IL-5 receptor α chain expression on activated B cells. Journal of Experimental Medicine, 2008, 205, 409-421.	8.5	75
64	Memory Th1 Cells Augment Tumor-Specific CTL following Transcutaneous Peptide Immunization. Cancer Research, 2008, 68, 3941-3949.	0.9	9
65	Oct2 enhances antibody-secreting cell differentiation through regulation of IL-5 receptor a chain expression on activated B cells. Journal of Cell Biology, 2008, 180, i11-i11.	5.2	Ο
66	Origin and specificity of Foxp3â€expressing regulatory T cells in tuberculosis. FASEB Journal, 2008, 22, 505-505.	0.5	0
67	IL-5-Induced Hypereosinophilia Suppresses the Antigen-Induced Immune Response via a TGF-β-Dependent Mechanism. Journal of Immunology, 2007, 179, 284-294.	0.8	20
68	Nasal Cholera Toxin Elicits IL-5 and IL-5 Receptor α-Chain Expressing B-1a B Cells for Innate Mucosal IgA Antibody Responses. Journal of Immunology, 2007, 178, 6058-6065.	0.8	20
69	<i>Mycobacterium tuberculosis</i> Infects Dendritic Cells with High Frequency and Impairs Their Function In Vivo. Journal of Immunology, 2007, 179, 2509-2519.	0.8	471
70	A protein associated with Toll-like receptor (TLR) 4 (PRAT4A) is required for TLR-dependent immune responses. Journal of Experimental Medicine, 2007, 204, 2963-2976.	8.5	162
71	Lnk negatively regulates self-renewal of hematopoietic stem cells by modifying thrombopoietin-mediated signal transduction. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2349-2354.	7.1	133
72	Role of Cytokines in Allergic Airway Inflammation. International Archives of Allergy and Immunology, 2007, 142, 265-273.	2.1	139

#	Article	IF	CITATIONS
73	Instruction of naive CD4+T-cell fate to T-bet expression and T helper 1 development: roles of T-cell receptor-mediated signals. Immunology, 2007, 122, 210-221.	4.4	18
74	Transient blocking of Lnk-mediated pathways as a potential approach to promote engrafting ability of hematopoietic progenitor cells. Inflammation and Regeneration, 2007, 27, 59-64.	3.7	0
75	Toll-like Receptors on Hematopoietic Progenitor Cells Stimulate Innate Immune System Replenishment. Immunity, 2006, 24, 801-812.	14.3	723
76	Enhanced engraftment of hematopoietic stem/progenitor cells by the transient inhibition of an adaptor protein, Lnk. Blood, 2006, 107, 2968-2975.	1.4	41
77	Augmented induction of CD8+ cytotoxic T-cell response and antitumour resistance by T helper type 1-inducing peptide. Immunology, 2006, 117, 47-58.	4.4	18
78	Interleukin-5 regulates genes involved in B-cell terminal maturation. Immunology, 2006, 118, 060530020504002-???.	4.4	79
79	The order of expression of transcription factors directs hierarchical specification of hematopoietic lineages. Genes and Development, 2006, 20, 3010-3021.	5.9	251
80	Interleukin 5 Plays an Essential Role in Elicitation of Contact Sensitivity through Dual Effects on Eosinophils and B-1 Cells. International Archives of Allergy and Immunology, 2006, 140, 8-16.	2.1	19
81	A Protein Associated with Toll-Like Receptor 4 (PRAT4A) Regulates Cell Surface Expression of TLR4. Journal of Immunology, 2006, 177, 1772-1779.	0.8	101
82	Roles of Membrane Domains in the Signaling Pathway for B Cell Survival. , 2006, , 245-251.		0
83	Spred-1 negatively regulates allergen-induced airway eosinophilia and hyperresponsiveness. Journal of Experimental Medicine, 2005, 201, 73-82.	8.5	106
84	An Hour after Immunization Peritoneal B-1 Cells Are Activated to Migrate to Lymphoid Organs Where within 1 Day They Produce IgM Antibodies That Initiate Elicitation of Contact Sensitivity. Journal of Immunology, 2005, 175, 7170-7178.	0.8	64
85	The Radioprotective 105/MD-1 Complex Links TLR2 and TLR4/MD-2 in Antibody Response to Microbial Membranes. Journal of Immunology, 2005, 174, 7043-7049.	0.8	97
86	Identification of eosinophil lineage–committed progenitors in the murine bone marrow. Journal of Experimental Medicine, 2005, 201, 1891-1897.	8.5	170
87	Role of IL-5 in the innate immune system and disease control. International Congress Series, 2005, 1285, 145-154.	0.2	3
88	APS, an adaptor molecule containing PH and SH2 domains, has a negative regulatory role in B cell proliferation. Biochemical and Biophysical Research Communications, 2005, 330, 1005-1013.	2.1	11
89	Requirement of 8-mercaptoguanosine as a costimulus for IL-4-dependent μ to γ1 class switch recombination in CD38-activated B cells. Biochemical and Biophysical Research Communications, 2005, 336, 625-633.	2.1	7
90	Quantification of Self-Renewal Capacity in Single Hematopoietic Stem Cells from Normal and Lnk-Deficient Mice. Developmental Cell, 2005, 8, 907-914.	7.0	170

#	Article	IF	CITATIONS
91	Interleukin-5: Modulator of innate and acquired immunity. Ensho Saisei, 2005, 25, 482-491.	0.2	0
92	Negative Hematopoietic Scaffold Lnk Upregulates Integrin Outside-In Signaling in Platelets Blood, 2005, 106, 382-382.	1.4	0
93	The Role of IL-5 for Mature B-1 Cells in Homeostatic Proliferation, Cell Survival, and Ig Production. Journal of Immunology, 2004, 172, 6020-6029.	0.8	123
94	Role of Interleukin-5 and Eosinophils in Allergen-Induced Airway Remodeling in Mice. American Journal of Respiratory Cell and Molecular Biology, 2004, 31, 62-68.	2.9	165
95	The role of antigenic peptide in CD4+ T helper phenotype development in a T cell receptor transgenic model. International Immunology, 2004, 16, 1691-1699.	4.0	107
96	Increased Numbers of B-1 Cells and Enhanced Responses against TI-2 Antigen in Mice Lacking APS, an Adaptor Molecule Containing PH and SH2 Domains. Molecular and Cellular Biology, 2004, 24, 2243-2250.	2.3	21
97	Bruton's tyrosine kinase (Btk) enhances transcriptional coâ€activation activity of BAM11, a Btkâ€associated molecule of a subunit of SWI/SNF complexes. International Immunology, 2004, 16, 747-757.	4.0	21
98	Abrogation of autoimmune disease in Lyn-deficient mice by the deletion of IL-5 receptor α chain gene. Cellular Immunology, 2004, 228, 110-118.	3.0	10
99	Transgene-mediated hyper-expression of IL-5 inhibits autoimmune disease but increases the risk of B cell chronic lymphocytic leukemia in a model of murine lupus. European Journal of Immunology, 2004, 34, 2740-2749.	2.9	33
100	Roles of a conserved family of adaptor proteins, Lnk, SH2-B, and APS, for mast cell development, growth, and functions: APS-deficiency causes augmented degranulation and reduced actin assembly. Biochemical and Biophysical Research Communications, 2004, 315, 356-362.	2.1	28
101	Intraepithelial infiltration of eosinophils and their contribution to the elimination of adult intestinal nematode, Strongyloides venezuelensis in mice. Parasitology International, 2003, 52, 71-79.	1.3	27
102	The immunogenic peptide for Th1 development. International Immunopharmacology, 2003, 3, 783-800.	3.8	24
103	Critical Role of IL-5 in Antigen-Induced Pulmonary Eosinophilia, but Not in Lymphocyte Activation. International Archives of Allergy and Immunology, 2003, 130, 209-215.	2.1	10
104	Immunogenicity of Peptide-25 of Ag85B in Th1 development: role of IFN-Â. International Immunology, 2003, 15, 1183-1194.	4.0	30
105	Regulation of Hematopoietic Development in the Aorta-Gonad-Mesonephros Region Mediated by Lnk Adaptor Protein. Molecular and Cellular Biology, 2003, 23, 8486-8494.	2.3	38
106	Increased Insulin Sensitivity and Hypoinsulinemia in APS Knockout Mice. Diabetes, 2003, 52, 2657-2665.	0.6	86
107	Impaired Lymphopoiesis and Altered B Cell Subpopulations in Mice Overexpressing Lnk Adaptor Protein. Journal of Immunology, 2003, 170, 703-710.	0.8	47
108	SH2-B Is Required for Both Male and Female Reproduction. Molecular and Cellular Biology, 2002, 22, 3066-3077.	2.3	61

#	Article	IF	CITATIONS
109	Enhanced Hematopoiesis by Hematopoietic Progenitor Cells Lacking Intracellular Adaptor Protein, Lnk. Journal of Experimental Medicine, 2002, 195, 151-160.	8.5	128
110	NF-kappaB is required for CD38-mediated induction of Cgamma1 germline transcripts in murine B lymphocytes. International Immunology, 2002, 14, 1055-1064.	4.0	40
111	Impaired Vitamin A-Mediated Mucosal IgA Response in IL-5 Receptor-Knockout Mice. Biochemical and Biophysical Research Communications, 2001, 285, 546-549.	2.1	22
112	Effect of repeated antigen inhalation on airway inflammation and bronchial responsiveness to acetylcholine in interleukin-5 transgenic mice. Allergology International, 2001, 50, 89-98.	3.3	0
113	Reduction of atherosclerosis despite hypercholesterolemia in lyn-deficient mice fed a high-fat diet. Genes To Cells, 2001, 6, 37-42.	1.2	12
114	Bruton's tyrosine kinase is required for signaling the CD79b-mediated pro-B to pre-B cell transition. International Immunology, 2001, 13, 485-493.	4.0	27
115	Essential Role of Stat5 for IL-5-Dependent IgH Switch Recombination in Mouse B Cells. Journal of Immunology, 2001, 167, 5018-5026.	0.8	34
116	Both Stat5a and Stat5b are required for antigen-induced eosinophil and T-cell recruitment into the tissue. Blood, 2000, 95, 1370-1377.	1.4	79
117	Identification and characterization of a molecule, BAM11, that associates with the pleckstrin homology domain of mouse Btk. International Immunology, 2000, 12, 1397-1408.	4.0	20
118	Rap1 Is a Potent Activation Signal for Leukocyte Function-Associated Antigen 1 Distinct from Protein Kinase C and Phosphatidylinositol-3-OH Kinase. Molecular and Cellular Biology, 2000, 20, 1956-1969.	2.3	313
119	Distinct Mechanisms of α5β1 Integrin Activation by Ha-Ras and R-Ras. Journal of Biological Chemistry, 2000, 275, 22590-22596.	3.4	51
120	Molecular Cloning of the Mouse APS as a Member of the Lnk Family Adaptor Proteins. Biochemical and Biophysical Research Communications, 2000, 272, 45-54.	2.1	35
121	Control of B Cell Production by the Adaptor Protein Lnk. Immunity, 2000, 13, 599-609.	14.3	127
122	Differential inhibitory effects of sophoricoside analogs on bioactivity of several cytokines. Life Sciences, 2000, 67, 2855-2863.	4.3	34
123	Sophoricoside Analogs as the IL-5 Inhibitors from Sophora japonica. Planta Medica, 1999, 65, 408-412.	1.3	52
124	Requirement of IL-5 for induction of autoimmune hemolytic anemia in anti-red blood cell autoantibody transgenic mice. International Immunology, 1999, 11, 995-1000.	4.0	25
125	Distinctive roles of Fyn and Lyn in IgD- and IgM-mediated signaling. International Immunology, 1999, 11, 1441-1449.	4.0	25
126	IgG1 production by sIgD+ splenic B cells and peritoneal B-1 cells in response to IL-5 and CD38 ligation. International Immunology, 1999, 11, 915-923.	4.0	24

#	Article	IF	CITATIONS
127	Identification of Amino Acid Residues of the T-Cell Epitope of <i>Mycobacterium tuberculosis</i> α Antigen Critical for Vβ11 ⁺ Th1 Cells. Infection and Immunity, 1999, 67, 4312-4319.	2.2	26
128	Eosinophil and IgE responses of IL-5 transgenic mice experimentally infected with Nippostrongylus brasiliensis. Korean Journal of Parasitology, 1999, 37, 93.	1.3	1
129	Defective degranulation and calcium mobilization of bone-marrow derived mast cells from Xid and Btk-deficient mice. Immunology Letters, 1998, 64, 109-118.	2.5	41
130	Interleukin 5 and B cell differentiation. Cytokine and Growth Factor Reviews, 1998, 9, 25-35.	7.2	99
131	B Lymphocyte Activation. , 1998, , 349-352.		0
132	JAK2 and JAK1 Constitutively Associate With an Interleukin-5 (IL-5) Receptor α and βc Subunit, Respectively, and Are Activated Upon IL-5 Stimulation. Blood, 1998, 91, 2264-2271.	1.4	96
133	JAK2 and JAK1 Constitutively Associate With an Interleukin-5 (IL-5) Receptor α and βc Subunit, Respectively, and Are Activated Upon IL-5 Stimulation. Blood, 1998, 91, 2264-2271.	1.4	4
134	Cytokines Involved in B-Cell Differentiation and Their Sites of Action. Experimental Biology and Medicine, 1997, 215, 121-133.	2.4	59
135	The Activation of the JAK2/STAT5 Pathway Is Commonly Involved in Signaling through the Human IL-5 Receptor. International Archives of Allergy and Immunology, 1997, 114, 24-27.	2.1	29
136	Apoptosis and in vivo distribution and clearance of eosinophils in normal and <i>Trichinella spiralis</i> -infected rats. Journal of Leukocyte Biology, 1997, 62, 309-317.	3.3	15
137	Protective Roles of Eosinophils in <i>Nippostrongylus brasiliensis</i> Infection. International Archives of Allergy and Immunology, 1997, 114, 45-50.	2.1	53
138	Interleukin-5. Growth Factors and Cytokines in Health and Disease, 1997, 2, 143-200.	0.2	10
139	Interleukin-5. BioDrugs, 1997, 8, 33-45.	4.6	0
140	Intramuscular Injection of Expression Plasmid DNA Is an Effective Means of Long-Term Systemic Delivery of Interleukin-5. Biochemical and Biophysical Research Communications, 1997, 233, 527-531.	2.1	74
141	Eosinophilia and intracranial worm recovery in interleukin-5 transgenic and interleukin-5 receptor α chain-knockout mice infected with Angiostrongylus cantonensis. Parasitology Research, 1997, 83, 583-590.	1.6	49
142	Defective B-1 Cell Development and Impaired Immunity against Angiostrongylus cantonensis in IL-5Rα-Deficient Mice. Immunity, 1996, 4, 483-494.	14.3	208
143	Immunological Analysis of Organized Pneumonia with Eosinophilic Pleural Effusion. International Archives of Allergy and Immunology, 1996, 111, 195-198.	2.1	1
144	The relevance of murine animal models to study the development of allergic bronchial asthma. Immunology and Cell Biology, 1996, 74, 209-217.	2.3	41

#	Article	IF	CITATIONS
145	Critical proline residues of the cytoplasmic domain of the IL-5 receptor $\hat{I}\pm$ chain and its function in IL-5-mediated activation of JAK kinase and STAT5. International Immunology, 1996, 8, 237-245.	4.0	70
146	Interleukin-5, IL-5. The Journal of Japan Atherosclerosis Society, 1996, 23, 599-603.	0.0	1
147	IL-5 Predominant in Bronchoalveolar Lavage Fluid and Peripheral Blood in a Patient with Acute Eosinophilic Pneumonia Internal Medicine, 1995, 34, 65-68.	0.7	23
148	Evaluation of Airway Hyperreactivity in Interleukin-5 Transgenic Mice. International Archives of Allergy and Immunology, 1995, 108, 28-30.	2.1	23
149	Adhesion Molecules on Eosinophils in Acute Eosinophilic Pneumonia. American Journal of Respiratory and Critical Care Medicine, 1995, 151, 1259-1262.	5.6	32
150	Involvement of the interleukin-2 receptor Î ³ subunit in interleukin-4-dependent activation of mouse hematopoietic cells and splenic B cells. European Journal of Immunology, 1995, 25, 126-131.	2.9	13
151	Antibody against interleukin-5 prevents antigen-induced eosinophil infiltration and bronchial hyperreactivity in the guinea pig airways. Immunology Letters, 1995, 45, 109-116.	2.5	49
152	Defective IL-5-receptor-mediated signaling in B cells of X-linked immunodeficient mice. International Immunology, 1995, 7, 21-30.	4.0	55
153	Activation of bruton's tyrosine kinase (BTK) by a point mutation in its pleckstrin homology (PH) domain. Immunity, 1995, 2, 451-460.	14.3	177
154	Interleukin-5 Receptor and CD5-Positive B Cells. Methods, 1995, 8, 45-59.	3.8	8
155	Interleukin-5: An overview. Cancer Treatment and Research, 1995, 80, 187-208.	0.5	7
156	Biochemical and functional characterization of soluble form of IL-5 receptor α (sIL-5Rα) Development of ELISA system for detection of sIL-5Rα. Journal of Immunological Methods, 1994, 167, 289-298.	1.4	22
157	Detection of interleukin-5 messenger RNA and interleukin-5 protein in bronchial biopsies from asthma by nonradioactive in situ hybridization and immunohistochemistry. Journal of Allergy and Clinical Immunology, 1994, 94, 584-593.	2.9	19
158	Genetic control of T cell replacing factor/interleukin-5 production. Pathophysiology, 1994, 1, 223-228.	2.2	0
159	Regulatory effect of anti-interleukin-5 monoclonal antibody on intestinal worm burden in a primary infection with Strongyloides venezuelensis in mic. International Journal for Parasitology, 1994, 24, 951-957.	3.1	40
160	Functional Analysis of Thymic B Cells. Immunobiology, 1994, 190, 150-163.	1.9	17
161	The Murine Interleukin-5 Receptor α-Subunit Gene: Characterization of the Gene Structure and Chromosome Mapping. DNA and Cell Biology, 1994, 13, 283-292.	1.9	29
162	Interleukin-5 and Its Receptor System: Implications in the Immune System and Inflammation. Advances in Immunology, 1994, 57, 145-190.	2.2	119

#	Article	IF	CITATIONS
163	IL-5 and Its Receptor: Which Role Do They Play in the Immune Response?. International Archives of Allergy and Immunology, 1994, 104, 1-9.	2.1	56
164	Reconstitution of the Functional Interleukin-5 Receptor: The Cytoplasmic Domain of Alpha-Subunit Plays an Important Role in Growth Signal Transduction. International Archives of Allergy and Immunology, 1994, 104, 36-38.	2.1	8
165	<i>In vitro</i> antiâ€ŧumor activity of eosinophils from cancer patients treated with subcutaneous administration of interleukin 2. Role of interleukin 5. International Journal of Cancer, 1993, 54, 8-15.	5.1	68
166	Interleukin-5 induces tumor suppression by peritoneal exudate cells in mice. Cancer Immunology, Immunotherapy, 1993, 37, 227-232.	4.2	8
167	Effect of anti-IL-5 monoclonal antibody on allergic bronchial eosinophilia and airway hyperresponsiveness in mice. Life Sciences, 1993, 53, PL243-PL247.	4.3	87
168	Maintenance of CD5+B Cells at an Early Developmental Stage by Interleukin-5: Evidence from Immunoglobulin Gene Usage in Interleukin-5 Transgenic Mice. DNA and Cell Biology, 1993, 12, 481-491.	1.9	10
169	Role of CD4+ T lymphocytes and interleukin-5 in antigen-induced eosinophil recruitment into the site of cutaneous late-phase reaction in mice. Journal of Leukocyte Biology, 1992, 52, 572-578.	3.3	39
170	Interleukin-5 Levels of Pleural Fluid and Serum Samples in a Patient with PIE Syndrome. Chest, 1992, 102, 1296-1297.	0.8	14
171	CD4 ⁺ T-Lymphocytes and Interleukin-5 Mediate Antigen-induced Eosinophil Infiltration into the Mouse Trachea. The American Review of Respiratory Disease, 1992, 146, 374-377.	2.9	364
172	Localization of the gene encoding the α subunit of human interleukin-5 receptor (IL5RA) to chromosome region 3p24–3p26. Genomics, 1992, 14, 755-758.	2.9	23
173	Cytokine Receptors on Ly-1 B Cells. Annals of the New York Academy of Sciences, 1992, 651, 241-258.	3.8	19
174	Coexpression of CD5 and IL-5 Receptor on Peritoneal B Cells. Annals of the New York Academy of Sciences, 1992, 651, 261-263.	3.8	6
175	Differential regulation of IgA production by TGF-β and IL-5: TGF-β induces surface IgA-positive cells bearing IL-5 receptor, whereas IL-5 promotes their survival and maturation into IgA-secreting cells. Cellular Immunology, 1992, 140, 158-172.	3.0	77
176	Role of the interleukin 5 receptor system in hematopoiesis: Molecular basis for overlapping function of cytokines. BioEssays, 1992, 14, 527-533.	2.5	11
177	Interleukin 5 and its receptor. Progress in Growth Factor Research, 1991, 3, 87-102.	1.6	25
178	T-Cell-Dependent Accumulation of Eosinophils in the Lung and Its Inhibition by Monoclonal Anti-Interleukin-5. International Archives of Allergy and Immunology, 1991, 94, 171-173.	2.1	44
179	Role of Interleukin-5 in Local Accumulation of Eosinophils in Mouse Allergic Peritonitis. International Archives of Allergy and Immunology, 1991, 96, 41-45.	2.1	40
180	Characterization of the human IL-5 receptors on eosinophils. Cellular Immunology, 1991, 133, 484-497.	3.0	65

#	Article	IF	CITATIONS
181	Molecular characterization of the \hat{l}^2 chain of the murine interleukin 5 receptor. International Immunology, 1991, 3, 665-672.	4.0	31
182	Murine interleukin 5 receptor isolated by immunoaffinity chromatography: comparison of determined N-terminal sequence and deduced primary sequence from cDNA and implication of a role of the intracytoplasmic domain. International Immunology, 1991, 3, 889-898.	4.0	11
183	<i>In vivo</i> administration of antibody to murine IL-5 receptor inhibits eosinophilia of IL-5 transgenic mice. International Immunology, 1991, 3, 135-139.	4.0	63
184	Interleukin 5 (ILâ \in 5) and Its Receptor. Microbiology and Immunology, 1991, 35, 593-606.	1.4	15
185	Elevated Expression of Protoâ€Oncogenes during Interleukinâ€5â€Induced Growth and Differentiation of Murine B Lineage Cells. Microbiology and Immunology, 1990, 34, 937-952.	1.4	6
186	Interleukin 5 activity in sera from patients with eosinophilia. British Journal of Haematology, 1990, 75, 458-462.	2.5	44
187	Retroviral interleukin 5 gene transfer into interleukin 5-dependent growing cell lines results in autocrine growth and tumorigenicity. European Journal of Immunology, 1990, 20, 2699-2705.	2.9	12
188	Conversion of Normal Ly-1-Positive B-Lineage Cells into Ly-1-Positive Macrophages in Long-Term Bone Marrow Cultures. Autoimmunity, 1990, 1, 113-125.	0.6	52
189	Characterization of the murine interleukin 5 receptor by using a monoclonal antibody. International Immunology, 1990, 2, 181-187.	4.0	58
190	Interleukin 5 and interleukin 3 induce serine and tyrosine phosphorylations of several cellular proteins in an interleukin 5-dependent cell line. Biochemical and Biophysical Research Communications, 1990, 173, 1102-1108.	2.1	72
191	Structural comparison of murine T-cell (B151K12)-derived T-cell-replacing factor (IL-5) with RIL-5: Dimer formation is essential for the expression of biological activity. Molecular Immunology, 1990, 27, 911-920.	2.2	33
192	Establishment of IL-5-Dependent Early B Cell Lines by Long-Term Bone Marrow Cultures. Growth Factors, 1989, 1, 135-146.	1.7	70
193	Purification and Characterization of Recombinant Human Interleukin 5 Expressed in Chinese Hamster Ovary Cells. Journal of Biochemistry, 1989, 106, 23-28.	1.7	48
194	Mechanisms of the Interleukin 5-Induced Differentiation of B Cells1. Journal of Biochemistry, 1989, 106, 837-843.	1.7	14
195	T Cell-Replacing Factor (TRF)/Interleukin 5 (IL-5): Molecular and Functional Properties. Immunological Reviews, 1988, 102, 107-135.	6.0	258
196	A sensitive radioimmunoassay of α human atrial natriuretic polypeptide using monoclonal antibody recognizing human form ring structure. Life Sciences, 1988, 43, 761-768.	4.3	4
197	B-Cell Growth and Differentiation Factors. Experimental Biology and Medicine, 1988, 188, 243-258.	2.4	9
198	Production and Characterization of Monoclonal Antibodies Against Amino-Terminus of Human α-Atrial Natriuretic Polypeptide. Hybridoma, 1987, 6, 433-440.	0.6	6

#	Article	IF	CITATIONS
199	T cell replacing factor/interleukin 5 induces not only B-cell growth and differentiation, but also increased expression of interleukin 2 receptor on activated B-cells. Immunology Letters, 1987, 15, 205-215.	2.5	41
200	Effect of Passive Administration of Alloantiserum Containing Antibody against Putative Acceptor(s) for T Cellâ€Replacing Factor (TRF) in the Neonatal Stage on Development of B Cell Activity Responsive to TRF. Microbiology and Immunology, 1986, 30, 49-64.	1.4	0
201	Establishment of an Assay System for the Detection of Translated Materials of T Cellâ€Replacing Factor mRNA in <i>Xenopus</i> Oocytes. Microbiology and Immunology, 1986, 30, 789-798.	1.4	3
202	Cloning of complementary DNA encoding T-cell replacing factor and identity with B-cell growth factor II. Nature, 1986, 324, 70-73.	27.8	412
203	Cloning of cDNA for human T-cell replacing factor (interieukin-5) and comparison with the murine homologue. Nucleic Acids Research, 1986, 14, 9149-9158.	14.5	212
204	IMMUNOLOGICAL FUNCTION AND BIOLOGICAL CHARACTERIZATION OF T CELL-REPLACING FACTOR AND ITS ACCEPTOR SITE(S) ON B CELLS. , 1983, , 1-16.		1
205	DBA/2Ha Mice as a Model of an X-Linked Immunodeficiency which is Defective in the Expression of TRF-Acceptor Site(s) on B Lymphocytes. Immunological Reviews, 1982, 64, 25-55.	6.0	28
206	TRF-RESPONSIVE B CELLS CONSTITUTE A SUBPOPULATION DISTINCT FROM THE OTHER B CELL SUBPOPULATION. , 1982, , 161-165.		0
207	Antibody against T cell-replacing factor acceptor site(s) augments in vivo primary IgM responses to suboptimal doses of heterologous erythrocytes. Nature, 1981, 292, 360-362.	27.8	14
208	X-linked recessive inheritance of a defective responsiveness to T-cell-replacing factor in DBA/2Ha mice. Immunology Letters, 1981, 3, 137-143.	2.5	8
209	Studies on Delayed Hypersensitivity to Protein Antigen: Antigenâ€specific Suppression of Delayed Hypersensitivity by Chemically Modified Antigen. Microbiology and Immunology, 1979, 23, 105-116.	1.4	2
210	Regulatory Mechanism of Reagin Production in Mice at the T Cell Level. Microbiology and Immunology, 1979, 23, 1109-1125.	1.4	3
211	Selective suppression of t-cell activity in tumor-bearing mice and its improvement by lentinan, a potent anti-tumor polysaccharide. International Journal of Cancer, 1976, 18, 93-104.	5.1	51
212	Selective inhibition of T lymphocyte repopulation of lymphoid organs as a mechanism of immunosuppression in tumor-bearing mice. International Journal of Cancer, 1976, 18, 612-621.	5.1	7
213	Reaginic antibody formation in the mouse. Cellular Immunology, 1975, 20, 276-289.	3.0	79
214	Enhancing factor on anti-hapten antibody response released from PPDs-stimulated tubercle bacilli-sensitized cells. Immunochemistry, 1974, 11, 107-109.	1.2	17
215	The Augmenting Effect of Antibody on the Induction of an Immune Response. Japanese Journal of Microbiology, 1972, 16, 35-42.	0.4	4
216	Helper acitivity of tuberculin-reactive cells on anti-hapten antibody response. Immunochemistry, 1972, 9, 1247-1250.	1.2	5