Wolf H Fridman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10860975/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Immune-Desert Tumor Microenvironment in Thoracic SMARCA4-Deficient Undifferentiated Tumors with Limited Efficacy of Immune Checkpoint Inhibitors. Oncologist, 2022, 27, 501-511.	1.9	14
2	B cells and tertiary lymphoid structures as determinants of tumour immune contexture and clinical outcome. Nature Reviews Clinical Oncology, 2022, 19, 441-457.	12.5	176
3	Les structures lymphoÃ ⁻ des tertiaires génÃ rent et propagent des plasmocytes produisant desÂanticorps antitumoraux dans le cancer du rein. Medecine/Sciences, 2022, 38, 536-538.	0.0	0
4	Review of Prognostic Expression Markers for Clear Cell Renal Cell Carcinoma. Frontiers in Oncology, 2021, 11, 643065.	1.3	26
5	Complement C1s and C4d as Prognostic Biomarkers in Renal Cancer: Emergence of Noncanonical Functions of C1s. Cancer Immunology Research, 2021, 9, 891-908.	1.6	43
6	Mature tertiary lymphoid structures predict immune checkpoint inhibitor efficacy in solid tumors independently of PD-L1 expression. Nature Cancer, 2021, 2, 794-802.	5.7	173
7	Therapeutic Targeting of the Colorectal Tumor Stroma. Gastroenterology, 2020, 158, 303-321.	0.6	51
8	The murine Microenvironment Cell Population counter method to estimate abundance of tissue-infiltrating immune and stromal cell populations in murine samples using gene expression. Genome Medicine, 2020, 12, 86.	3.6	63
9	Complement System: Promoter or Suppressor of Cancer Progression?. Antibodies, 2020, 9, 57.	1.2	58
10	The Tumor Microenvironment in the Response to Immune Checkpoint Blockade Therapies. Frontiers in Immunology, 2020, 11, 784.	2.2	339
11	B cells are associated with survival and immunotherapy response in sarcoma. Nature, 2020, 577, 556-560.	13.7	1,158
12	Tumor Cells Hijack Macrophage-Produced Complement C1q to Promote Tumor Growth. Cancer Immunology Research, 2019, 7, 1091-1105.	1.6	153
13	Integrating histopathology, immune biomarkers, and molecular subgroups in solid cancer: the next step in precision oncology. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2019, 474, 463-474.	1.4	16
14	Immune-based identification of cancer patients at high risk of progression. Current Opinion in Immunology, 2018, 51, 97-102.	2.4	29
15	Transcriptomic analysis of the tumor microenvironment to guide prognosis and immunotherapies. Cancer Immunology, Immunotherapy, 2018, 67, 981-988.	2.0	89
16	Quantitative Analyses of the Tumor Microenvironment Composition and Orientation in the Era of Precision Medicine. Frontiers in Oncology, 2018, 8, 390.	1.3	46
17	Tumor-Infiltrating and Peripheral Blood T-cell Immunophenotypes Predict Early Relapse in Localized Clear Cell Renal Cell Carcinoma. Clinical Cancer Research, 2017, 23, 4416-4428.	3.2	252
18	The immune contexture in cancer prognosis and treatment. Nature Reviews Clinical Oncology, 2017, 14, 717-734.	12.5	1,590

WOLF H FRIDMAN

#	Article	IF	CITATIONS
19	Estimating theÂpopulation abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biology, 2016, 17, 218.	3.8	1,980
20	Immune Contexture, Immunoscore, and Malignant Cell Molecular Subgroups for Prognostic and Theranostic Classifications of Cancers. Advances in Immunology, 2016, 130, 95-190.	1.1	160
21	Orchestration and Prognostic Significance of Immune Checkpoints in the Microenvironment of Primary and Metastatic Renal Cell Cancer. Clinical Cancer Research, 2015, 21, 3031-3040.	3.2	355
22	PD-1–Expressing Tumor-Infiltrating T Cells Are a Favorable Prognostic Biomarker in HPV-Associated Head and Neck Cancer. Cancer Research, 2013, 73, 128-138.	0.4	554
23	Comprehensive analysis of current approaches to inhibit regulatory T cells in cancer. Oncolmmunology, 2012, 1, 326-333.	2.1	95
24	The ultimate goal of curative anti-cancer therapies: inducing an adaptive anti-tumor immune response. Frontiers in Immunology, 2011, 2, 66.	2.2	9
25	A Decrease of Regulatory T Cells Correlates With Overall Survival After Sunitinib-based Antiangiogenic Therapy in Metastatic Renal Cancer Patients. Journal of Immunotherapy, 2010, 33, 991-998.	1.2	188
26	Better understanding tumor–host interaction in head and neck cancer to improve the design and development of immunotherapeutic strategies. Head and Neck, 2010, 32, 946-958.	0.9	50
27	Immune Infiltration in Human Cancer: Prognostic Significance and Disease Control. Current Topics in Microbiology and Immunology, 2010, 344, 1-24.	0.7	193
28	Revisiting the Prognostic Value of Regulatory T Cells in Patients With Cancer. Journal of Clinical Oncology, 2009, 27, e5-e6.	0.8	36
29	The Soluble α Chain of Interleukin-15 Receptor: A Proinflammatory Molecule Associated with Tumor Progression in Head and Neck Cancer. Cancer Research, 2008, 68, 3907-3914.	0.4	75
30	B Subunit of Shiga Toxin-Based Vaccines Synergize with α-Galactosylceramide to Break Tolerance against Self Antigen and Elicit Antiviral Immunity. Journal of Immunology, 2007, 179, 3371-3379.	0.4	55
31	The SH2 domain-containing inositol 5-phosphatase SHIP1 is recruited to the intracytoplasmic domain of human Fcl ³ RIIB and is mandatory for negative regulation of B cell activation. Immunology Letters, 2006, 104, 156-165.	1.1	30
32	Prognostic Value of Tumor-Infiltrating CD4+ T-Cell Subpopulations in Head and Neck Cancers. Clinical Cancer Research, 2006, 12, 465-472.	3.2	517
33	Two Distinct Tyrosine-based Motifs Enable the Inhibitory Receptor FcÎ ³ RIIB to Cooperatively Recruit the Inositol Phosphatases SHIP1/2 and the Adapters Grb2/Grap. Journal of Biological Chemistry, 2004, 279, 51931-51938.	1.6	45
34	Interleukin-17 inhibits tumor cell growth by means of a T-cell–dependent mechanism. Blood, 2002, 99, 2114-2121.	0.6	309
35	Negative regulation of mast cell proliferation by Fcl ³ RIIB. Molecular Immunology, 2002, 38, 1295-1299.	1.0	40
36	Src Homology 2 Domain-containing Inositol 5-Phosphatase 1 Mediates Cell Cycle Arrest by FcγRIIB. Journal of Biological Chemistry, 2001, 276, 30381-30391.	1.6	27

Wolf H Fridman

#	Article	IF	CITATIONS
37	Differential Modulation of Stimulatory and Inhibitory Fcl̂ ³ Receptors on Human Monocytes by Th1 and Th2 Cytokines. Journal of Immunology, 2001, 166, 531-537.	0.4	215
38	Insufficient Phosphorylation Prevents Fcl ³ RIIB from Recruiting the SH2 Domain-containing Protein-tyrosine Phosphatase SHP-1. Journal of Biological Chemistry, 2001, 276, 6327-6336.	1.6	43
39	SHIP1-mediated negative regulation of cell activation and proliferation by FcÎ ³ RIIB. , 2001, , 141-152.		0
40	Molecular Basis of the Recruitment of the SH2 Domain-containing Inositol 5-Phosphatases SHIP1 and SHIP2 by Fcl³RIIB. Journal of Biological Chemistry, 2000, 275, 37357-37364.	1.6	84
41	Signal Regulatory Proteins Negatively Regulate Immunoreceptor-dependent Cell Activation. Journal of Biological Chemistry, 1999, 274, 32493-32499.	1.6	61
42	Cytokines and cell regulation. Molecular Aspects of Medicine, 1997, 18, 1-90.	2.7	14
43	Selective in vivo recruitment of the phosphatidylinositol phosphatase SHIP by phosphorylated FcγRIIB during negative regulation of IgE-dependent mouse mast cell activation. Immunology Letters, 1996, 54, 83-91.	1.1	121
44	The same tyrosine-based inhibition motif, in the intra-cytoplasmic domain of FcÎ ³ RIIB, regulates negatively BCR-, TCR-, and FcR-dependent cell activation. Immunity, 1995, 3, 635-646.	6.6	425
45	Distinct intracytoplasmic sequences are required for endocytosis and phagocytosis via murine FcÎ ³ RII in mast cells. International Immunology, 1993, 5, 1393-1401.	1.8	44
46	Receptors for immunoglobulin isotypes (FcR) on murine T cells: I. Multiple FcR expression on T lymphocytes and hybridoma T cell clones. European Journal of Immunology, 1985, 15, 662-667.	1.6	33