Thomas Klausberger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1086034/publications.pdf

Version: 2024-02-01

43 papers

8,110 citations

30 h-index 42 g-index

43 all docs

43 docs citations

times ranked

43

6431 citing authors

#	Article	IF	CITATIONS
1	Neurogliaform cells dynamically decouple neuronal synchrony between brain areas. Science, 2022, 377, 324-328.	12.6	19
2	Ca2+ imaging of neurons in freely moving rats with automatic post hoc histological identification. Journal of Neuroscience Methods, 2020, 341, 108765.	2.5	9
3	Synaptic organisation and behaviour-dependent activity of mGluR8a-innervated GABAergic trilaminar cells projecting from the hippocampus to the subiculum. Brain Structure and Function, 2020, 225, 705-734.	2.3	11
4	Unexpected Rule-Changes in a Working Memory Task Shape the Firing of Histologically Identified Delay-Tuned Neurons in the Prefrontal Cortex. Cell Reports, 2020, 30, 1613-1626.e4.	6.4	7
5	A Visual Two-Choice Rule-Switch Task for Head-Fixed Mice. Frontiers in Behavioral Neuroscience, 2019, 13, 119.	2.0	10
6	Activity of Prefrontal Neurons Predict Future Choices during Gambling. Neuron, 2019, 101, 152-164.e7.	8.1	26
7	Spatio-temporal specialization of GABAergic septo-hippocampal neurons for rhythmic network activity. Brain Structure and Function, 2018, 223, 2409-2432.	2.3	37
8	Fluid network dynamics in the prefrontal cortex during multiple strategy switching. Nature Communications, 2018, 9, 309.	12.8	43
9	The cognitive nuances of surprising events: exposure to unexpected stimuli elicits firing variations in neurons of the dorsal CA1 hippocampus. Brain Structure and Function, 2018, 223, 3183-3211.	2.3	8
10	Spike-Timing of Orbitofrontal Neurons Is Synchronized With Breathing. Frontiers in Cellular Neuroscience, 2018, 12, 105.	3.7	29
11	Distinct gamma oscillations in the distal dendritic fields of the dentate gyrus and the CA1 area of mouse hippocampus. Brain Structure and Function, 2017, 222, 3355-3365.	2.3	24
12	Behaviorâ€dependent activity patterns of GABAergic longâ€range projecting neurons in the rat hippocampus. Hippocampus, 2017, 27, 359-377.	1.9	43
13	Hippocampal Place Cells Couple to Three Different Gamma Oscillations during Place Field Traversal. Neuron, 2016, 91, 34-40.	8.1	80
14	Divisions of Identified Parvalbumin-Expressing Basket Cells during Working Memory-Guided Decision Making. Neuron, 2016, 91, 1390-1401.	8.1	67
15	Selective information routing by ventral hippocampal CA1 projection neurons. Science, 2015, 348, 560-563.	12.6	283
16	Temporal Organization of GABAergic Interneurons in the Intermediate CA1 Hippocampus During Network Oscillations. Cerebral Cortex, 2015, 25, 1228-1240.	2.9	28
17	Three axonal projection routes of individual pyramidal cells in the ventral CA1 hippocampus. Frontiers in Neuroanatomy, 2014, 8, 53.	1.7	58
18	Layer-Specific GABAergic Control of Distinct Gamma Oscillations in the CA1 Hippocampus. Neuron, 2014, 81, 1126-1139.	8.1	151

#	Article	IF	Citations
19	Temporal redistribution of inhibition over neuronal subcellular domains underlies state-dependent rhythmic change of excitability in the hippocampus. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20120518.	4.0	112
20	Sleep and Movement Differentiates Actions of Two Types of Somatostatin-Expressing GABAergic Interneuron in Rat Hippocampus. Neuron, 2014, 82, 872-886.	8.1	149
21	Network state-dependent inhibition of identified hippocampal CA3 axo-axonic cells in vivo. Nature Neuroscience, 2013, 16, 1802-1811.	14.8	128
22	Distinct Dendritic Arborization and <i>In Vivo </i> Firing Patterns of Parvalbumin-Expressing Basket Cells in the Hippocampal Area CA3. Journal of Neuroscience, 2013, 33, 6809-6825.	3.6	78
23	Temporal Dynamics of Parvalbumin-Expressing Axo-axonic and Basket Cells in the Rat Medial Prefrontal Cortex <i>In Vivo</i> . Journal of Neuroscience, 2012, 32, 16496-16502.	3.6	87
24	Extrinsic and local glutamatergic inputs of the rat hippocampal CA1 area differentially innervate pyramidal cells and interneurons. Hippocampus, 2012, 22, 1379-1391.	1.9	75
25	Behavior-dependent specialization of identified hippocampal interneurons. Nature Neuroscience, 2012, 15, 1265-1271.	14.8	223
26	Terminal Field and Firing Selectivity of Cholecystokinin-Expressing Interneurons in the Hippocampal CA3 Area. Journal of Neuroscience, 2011, 31, 18073-18093.	3.6	70
27	Expression of COUP-TFII Nuclear Receptor in Restricted GABAergic Neuronal Populations in the Adult Rat Hippocampus. Journal of Neuroscience, 2010, 30, 1595-1609.	3.6	111
28	Distinct Firing Patterns of Identified Basket and Dendrite-Targeting Interneurons in the Prefrontal Cortex during Hippocampal Theta and Local Spindle Oscillations. Journal of Neuroscience, 2009, 29, 9563-9574.	3.6	65
29	GABAergic interneurons targeting dendrites of pyramidal cells in the CA1 area of the hippocampus. European Journal of Neuroscience, 2009, 30, 947-957.	2.6	203
30	lvy Cells: A Population of Nitric-Oxide-Producing, Slow-Spiking GABAergic Neurons and Their Involvement in Hippocampal Network Activity. Neuron, 2008, 57, 917-929.	8.1	221
31	Neuronal Diversity and Temporal Dynamics: The Unity of Hippocampal Circuit Operations. Science, 2008, 321, 53-57.	12.6	1,764
32	Rhythmically Active Enkephalin-Expressing GABAergic Cells in the CA1 Area of the Hippocampus Project to the Subiculum and Preferentially Innervate Interneurons. Journal of Neuroscience, 2008, 28, 10017-10022.	3.6	51
33	GABAergic circuits in the hippocampus. FASEB Journal, 2008, 22, 242.1.	0.5	0
34	Cell Type-Specific Tuning of Hippocampal Interneuron Firing during Gamma Oscillations <i>In Vivo</i> Journal of Neuroscience, 2007, 27, 8184-8189.	3.6	273
35	Neuronal Diversity in GABAergic Long-Range Projections from the Hippocampus. Journal of Neuroscience, 2007, 27, 8790-8804.	3.6	304
36	Defined types of cortical interneurone structure space and spike timing in the hippocampus. Journal of Physiology, 2005, 562, 9-26.	2.9	795

3

#	Article	IF	CITATIONS
37	Metabotropic Glutamate Receptor 8-Expressing Nerve Terminals Target Subsets of GABAergic Neurons in the Hippocampus. Journal of Neuroscience, 2005, 25, 10520-10536.	3 . 6	124
38	Complementary Roles of Cholecystokinin- and Parvalbumin-Expressing GABAergic Neurons in Hippocampal Network Oscillations. Journal of Neuroscience, 2005, 25, 9782-9793.	3.6	400
39	Spike timing of dendrite-targeting bistratified cells during hippocampal network oscillations in vivo. Nature Neuroscience, 2004, 7, 41-47.	14.8	339
40	Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo. Nature, 2003, 421, 844-848.	27.8	1,187
41	Cell Type- and Input-Specific Differences in the Number and Subtypes of Synaptic GABA _A Receptors in the Hippocampus. Journal of Neuroscience, 2002, 22, 2513-2521.	3.6	209
42	Identification of an amino acid sequence within GABAA receptor \hat{l}^23 subunits that is important for receptor assembly. Journal of Neurochemistry, 2002, 84, 127-135.	3.9	19
43	Subunit Composition and Quantitative Importance of Hetero-oligomeric Receptors: GABA _A Receptors Containing α ₆ Subunits. Journal of Neuroscience, 1998, 18, 2449-2457.	3.6	190