
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10859970/publications.pdf Version: 2024-02-01

ALEDEDO PULZ

#	Article	IF	CITATIONS
1	Genome-Wide Patterns of Sequence Divergence of Protein-Coding Genes Between <i>Drosophila buzzatii</i> and <i>D. mojavensis</i> . Journal of Heredity, 2019, 110, 92-101.	2.4	8
2	Computational Sequence Analysis of Inversion Breakpoint Regions in the CactophilicDrosophila mojavensisLineage. Journal of Heredity, 2019, 110, 102-117.	2.4	7
3	Concurrent Duplication of Drosophila Cid and Cenp-C Genes Resulted in Accelerated Evolution and Male Germline-Biased Expression of the New Copies. Journal of Molecular Evolution, 2018, 86, 353-364.	1.8	7
4	Exploration of the Drosophila buzzatii transposable element content suggests underestimation of repeats in Drosophila genomes. BMC Genomics, 2016, 17, 344.	2.8	22
5	Genomics of Ecological Adaptation in Cactophilic Drosophila. Genome Biology and Evolution, 2015, 7, 349-366.	2.5	51
6	Reassignment of Drosophila willistoni Genome Scaffolds to Chromosome II Arms. G3: Genes, Genomes, Genetics, 2015, 5, 2559-2566.	1.8	5
7	Structural and sequence diversity of the transposon Galileo in the Drosophila willistoni genome. BMC Genomics, 2014, 15, 792.	2.8	1
8	BuT2 Is a Member of the Third Major Group of hAT Transposons and Is Involved in Horizontal Transfer Events in the Genus Drosophila. Genome Biology and Evolution, 2014, 6, 352-365.	2.5	12
9	Tetris Is a Foldback Transposon that Provided the Building Blocks for an Emerging Satellite DNA of Drosophila virilis. Genome Biology and Evolution, 2014, 6, 1302-1313.	2.5	41
10	Striking structural dynamism and nucleotide sequence variation of the transposon Galileo in the genome of Drosophila mojavensis. Mobile DNA, 2013, 4, 6.	3.6	4
11	Identification of multiple binding sites for the THAP domain of the Galileo transposase in the long terminal inverted-repeats. Gene, 2013, 525, 84-91.	2.2	8
12	Description of a New Spotted-Thorax <i>Drosophila</i> (Diptera: Drosophilidae) Species and its Evolutionary Relationships Inferred by a Cladistic Analysis of Morphological Traits. Annals of the Entomological Society of America, 2013, 106, 695-705.	2.5	7
13	A Divergent P Element and Its Associated MITE, BuT5, Generate Chromosomal Inversions and Are Widespread within the Drosophila repleta Species Group. Genome Biology and Evolution, 2013, 5, 1127-1141.	2.5	9
14	Segmental Duplication, Microinversion, and Gene Loss Associated with a Complex Inversion Breakpoint Region in Drosophila. Molecular Biology and Evolution, 2012, 29, 1875-1889.	8.9	31
15	Gene alterations at Drosophila inversion breakpoints provide prima facie evidence for natural selection as an explanation for rapid chromosomal evolution. BMC Genomics, 2012, 13, 53.	2.8	35
16	Testing chromosomal phylogenies and inversion breakpoint reuse in Drosophila. The martensis cluster revisited. Chromosome Research, 2011, 19, 251-265.	2.2	3
17	The Transposon Galileo Generates Natural Chromosomal Inversions in Drosophila by Ectopic Recombination. PLoS ONE, 2009, 4, e7883.	2.5	64
18	Cloning and sequencing of the breakpoint regions of inversion 5g fixed in Drosophila buzzatii. Chromosoma, 2009, 118, 349-360.	2.2	12

#	Article	IF	CITATIONS
19	The <i>Foldback</i> -like element <i>Galileo</i> belongs to the <i>P</i> superfamily of DNA transposons and is widespread within the <i>Drosophila</i> genus. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2957-2962.	7.1	22
20	Testing Chromosomal Phylogenies and Inversion Breakpoint Reuse in Drosophila. Genetics, 2007, 175, 167-177.	2.9	27
21	Evolution of genes and genomes on the Drosophila phylogeny. Nature, 2007, 450, 203-218.	27.8	1,886
22	HOM-C evolution in Drosophila: is there a need for Hox gene clustering?. Trends in Genetics, 2007, 23, 55-59.	6.7	61
23	Protein Polymorphism Is Negatively Correlated with Conservation of Intronic Sequences and Complexity of Expression Patterns in Drosophila melanogaster. Journal of Molecular Evolution, 2007, 64, 511-518.	1.8	5
24	Abundance and chromosomal distribution of six Drosophila buzzatii transposons: BuT1, BuT2, BuT3, BuT4, BuT4, and BuT6. Chromosoma, 2006, 115, 403-412.	2.2	17
25	Fast sequence evolution of Hox and Hox-derived genes in the genus Drosophila. BMC Evolutionary Biology, 2006, 6, 106.	3.2	19
26	A BAC-based physical map of the Drosophila buzzatii genome. Genome Research, 2005, 15, 885-889.	5.5	21
27	Conservation of regulatory sequences and gene expression patterns in the disintegrating <i>Drosophila Hox</i> gene complex. Genome Research, 2005, 15, 692-700.	5.5	48
28	Molecular Characterization and Chromosomal Distribution of Galileo, Kepler and Newton, Three Foldback Transposable Elements of the Drosophila buzzatii Species ComplexSequence data from this article have been deposited in the EMBL/GenBank Data Libraries under accession nos. AY756161, AY756162, AY756163, AY756164, AY756165, AY756166, AY756167, AY756168, AY756169, AY756170 Geneti	2.9 cs, 2005,	27
29	169, 2047-2059. Silencing of a gene adjacent to the breakpoint of a widespreadDrosophilainversion by a transposon-induced antisense RNA. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9013-9018.	7.1	72
30	Duplicative and Conservative Transpositions of Larval serum protein 1 Genes in the Genus DrosophilaSequence data from this article have been deposited with the EMBL/GenBank Data Libraries under accession nos. AY561258 and AY561259 Genetics, 2004, 168, 253-264.	2.9	12
31	LOW OCCURRENCE OF GENE TRANSPOSITION EVENTS DURING THE EVOLUTION OF THE GENUS DROSOPHILA. Evolution; International Journal of Organic Evolution, 2003, 57, 1325-1335.	2.3	42
32	LOW OCCURRENCE OF GENE TRANSPOSITION EVENTS DURING THE EVOLUTION OF THE GENUS DROSOPHILA. Evolution; International Journal of Organic Evolution, 2003, 57, 1325.	2.3	11
33	The Foldback-like Transposon Galileo Is Involved in the Generation of Two Different Natural Chromosomal Inversions of Drosophila buzzatii. Molecular Biology and Evolution, 2003, 20, 674-685.	8.9	69
34	A New Split of the Hox Gene Complex in Drosophila: Relocation and Evolution of the Gene labial. Molecular Biology and Evolution, 2003, 20, 2042-2054.	8.9	40
35	Chromosomal Elements Evolve at Different Rates in the Drosophila Genome. Genetics, 2002, 161, 1137-1154.	2.9	51
36	How Malleable is the Eukaryotic Genome? Extreme Rate of Chromosomal Rearrangement in the Genus <i>Drosophila</i> . Genome Research, 2001, 11, 230-239.	5.5	166

#	Article	IF	CITATIONS
37	Molecular Characterization of Two Natural Hotspots in the <i>Drosophila buzzatii</i> Genome Induced by Transposon Insertions. Genome Research, 2001, 11, 1353-1364.	5.5	74
38	The Drosophila serido speciation puzzle: putting new pieces together. Genetica, 2000, 108, 217-227.	1.1	32
39	Molecular organization of the Drosophila melanogaster Adh chromosomal region in D. repleta and D. buzzatii, two distantly related species of the Drosophila subgenus. Chromosome Research, 2000, 8, 375-385.	2.2	9
40	Effect of Inversion Polymorphism on the Neutral Nucleotide Variability of Linked Chromosomal Regions in Drosophila. Genetics, 2000, 155, 685-698.	2.9	95
41	Comparative mapping of cosmids and gene clones from a 1.6 Mb chromosomal region of Drosophila melanogaster in three species of the distantly related subgenus Drosophila. Chromosoma, 1999, 108, 32-43.	2.2	23
42	Generation of a Widespread <i>Drosophila</i> Inversion by a Transposable Element. Science, 1999, 285, 415-418.	12.6	200
43	Recombination Rate Predicts Inversion Size in Diptera. Genetics, 1999, 153, 251-259.	2.9	35
44	Antagonistic Pleiotropic Effect of Second-Chromosome Inversions on Body Size and Early Life-History Traits in Drosophila buzzatii. Evolution; International Journal of Organic Evolution, 1998, 52, 144.	2.3	19
45	ANTAGONISTIC PLEIOTROPIC EFFECT OF SECOND-CHROMOSOME INVERSIONS ON BODY SIZE AND EARLY LIFE-HISTORY TRAITS IN <i>DROSOPHILA BUZZATII</i> . Evolution; International Journal of Organic Evolution, 1998, 52, 144-154.	2.3	41
46	INVERSION LENGTH AND BREAKPOINT DISTRIBUTION IN THE <i>DROSOPHILA BUZZATII</i> SPECIES COMPLEX: IS INVERSION LENGTH A SELECTED TRAIT?. Evolution; International Journal of Organic Evolution, 1997, 51, 1149-1155.	2.3	26
47	Inversion Length and Breakpoint Distribution in the Drosophila buzzatii Species Complex: Is Inversion Length a Selected Trait?. Evolution; International Journal of Organic Evolution, 1997, 51, 1149.	2.3	16
48	Chromosomal Homology and Molecular Organization of Muller's Elements <i>D</i> and <i>E</i> in the <i>Drosophila repleta</i> Species Group. Genetics, 1997, 145, 281-295.	2.9	53
49	Recombination and Gene Flux Caused by Gene Conversion and Crossing Over in Inversion Heterokaryotypes. Genetics, 1997, 146, 695-709.	2.9	203
50	On the Fertility Effects of Pericentric Inversions. Genetics, 1997, 147, 931-933.	2.9	41
51	Chromosomal evolution and comparative gene mapping in the Drosophila repleta species group. Genetics and Molecular Biology, 1997, 20, 553-565.	1.0	7
52	Dynamics of gametic disequilibria between loci linked to chromosome inversions: the recombination-redistributing effect of inversions. Genetical Research, 1996, 67, 67-76.	0.9	11
53	Mating Pattern and Fitness-Component Analysis Associated with Inversion Polymorphism in a Natural Population of Drosophila buzzatii. Evolution; International Journal of Organic Evolution, 1994, 48, 767.	2.3	4
54	MATING PATTERN AND FITNESS-COMPONENT ANALYSIS ASSOCIATED WITH INVERSION POLYMORPHISM IN A NATURAL POPULATION OF <i>DROSOPHILA BUZZATII</i> . Evolution; International Journal of Organic Evolution, 1994, 48, 767-780.	2.3	12

#	Article	IF	CITATIONS
55	Evolutionary cytogenetics of the Drosophila buzzatii species complex. Heredity, 1993, 70, 582-596.	2.6	95
56	Reproductive Relationships among Ten Species of the Drosophila repleta Group from South America and the West Indies. Evolution; International Journal of Organic Evolution, 1993, 47, 1616.	2.3	11
57	REPRODUCTIVE RELATIONSHIPS AMONG TEN SPECIES OF THE <i>DROSOPHILA REPLETA</i> GROUP FROM SOUTH AMERICA AND THE WEST INDIES. Evolution; International Journal of Organic Evolution, 1993, 47, 1616-1624.	2.3	22
58	The estimation of genotypic probabilities in an adult population by the analysis of descendants. Genetical Research, 1992, 59, 131-137.	0.9	3
59	The evolutionary history of Drosophila buzzatii. XX. Positive phenotypic covariance between field adult fitness components and body size. Journal of Evolutionary Biology, 1992, 5, 403-422.	1.7	83
60	The evolutionary history of Drosophila buzzatii. XXV. Random mating in nature. Heredity, 1992, 68, 373-379.	2.6	17
61	Description and Evolutionary Relationships of Two Species of the Drosophila mulleri Cluster (Diptera: Drosophilidae). Annals of the Entomological Society of America, 1990, 83, 444-452.	2.5	13
62	The Evolutionary History of Drosophila buzzatii. XIII. Random Differentiation as a Partial Explanation of Chromosomal Variation in a Structured Natural Population. American Naturalist, 1989, 133, 183-197.	2.1	31
63	Host-Plant Specificity in the Cactophilic Drosophila mulleri Species Complex. Journal of Animal Ecology, 1988, 57, 237.	2.8	86
64	Drosophila koepferae: a New Member of the Drosophila serido (Diptera: Drosophilidae) Superspecies Taxon1. Annals of the Entomological Society of America, 1988, 81, 380-385.	2.5	63
65	Potential Gene Exchange between South American Drosophila Species, with Description of a New Species in the D. repleta (Diptera: Drosophilidae) Group1. Annals of the Entomological Society of America, 1983, 76, 675-677.	2.5	5