Thomas Chacko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10859810/publications.pdf

Version: 2024-02-01

257450 361022 3,045 37 24 35 h-index citations g-index papers 37 37 37 2166 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Evaluating the Age Distribution of Exposed Crust in the Acasta Gneiss Complex Using Detrital Zircons in Pleistocene Eskers. Geochemistry, Geophysics, Geosystems, 2022, 23, .	2.5	5
2	Carbon and Nitrogen in Mantle-Derived Diamonds. Reviews in Mineralogy and Geochemistry, 2022, 88, 809-875.	4.8	17
3	Heat production and moho temperatures in cratonic crust: evidence from lower crustal xenoliths from the slave craton. Lithos, 2021, 380-381, 105889.	1.4	3
4	Elemental and radiogenic isotope perspective on formation and transformation of cratonic lower crust: Central Slave craton (Canada). Geochimica Et Cosmochimica Acta, 2020, 278, 78-93.	3.9	7
5	A comparison between zircons from the Acasta Gneiss Complex and the Jack Hills region. Earth and Planetary Science Letters, 2020, 531, 115975.	4.4	32
6	Insights into sea surface temperatures from the Cayman Islands from corals over the last ~540†years. Sedimentary Geology, 2019, 389, 218-240.	2.1	6
7	The Acasta Gneiss Complex. , 2019, , 329-347.		8
8	A reconnaissance view of tungsten reservoirs in some crustal and mantle rocks: Implications for interpreting W isotopic compositions and crust-mantle W cycling. Geochimica Et Cosmochimica Acta, 2018, 223, 300-318.	3.9	16
9	Geoelectric structure of the Great Slave Lake shear zone in northwest Alberta: implications for structure and tectonic history. Canadian Journal of Earth Sciences, 2018, 55, 295-307.	1.3	5
10	Petrogenesis and tectonics of the Acasta Gneiss Complex derived from integrated petrology and 142Nd and 182W extinct nuclide-geochemistry. Earth and Planetary Science Letters, 2018, 494, 12-22.	4.4	53
11	Data Reduction of Laser Ablation Splitâ€Stream (LASS) Analyses Using Newly Developed Features Within Iolite: With Applications to Luâ€Hf + Uâ€Pb in Detrital Zircon and Smâ€Nd +Uâ€Pb in Igneous Monazite. Geochemistry, Geophysics, Geosystems, 2017, 18, 4604-4622.	2.5	27
12	A Reconnaissance Study of Ti-minerals in Cratonic Granulite Xenoliths and their Potential as Recorders of Lower Crust Formation and Evolution. Journal of Petrology, 2017, 58, 2007-2034.	2.8	7
13	The birth of a cratonic nucleus: Lithogeochemical evolution of the 4.02–2.94 Ga Acasta Gneiss Complex. Precambrian Research, 2016, 281, 453-472.	2.7	73
14	Earth's earliest evolved crust generated in an Iceland-like setting. Nature Geoscience, 2014, 7, 529-533.	12.9	178
15	A Record of Paleoproterozoic Subduction Preserved in the Northern Slave Cratonic Mantle: Sr–Pb–O Isotope and Trace-element Investigations of Eclogite Xenoliths from the Jericho and Muskox Kimberlites. Journal of Petrology, 2014, 55, 549-583.	2.8	35
16	Eclogite formation beneath the northern Slave craton constrained by diamond inclusions: Oceanic lithosphere origin without a crustal signature. Earth and Planetary Science Letters, 2012, 319-320, 165-177.	4.4	39
17	Diamond growth from oxidized carbon sources beneath the Northern Slave Craton, Canada: A δ13C–N study of eclogite-hosted diamonds from the Jericho kimberlite. Geochimica Et Cosmochimica Acta, 2011, 75, 6027-6047.	3.9	89
18	Granulite sulphides as tracers of lower crustal origin and evolution: An example from the Slave craton, Canada. Geochimica Et Cosmochimica Acta, 2010, 74, 5368-5381.	3.9	14

#	Article	IF	CITATIONS
19	The origin of high-MgO diamond eclogites from the Jericho Kimberlite, Canada. Earth and Planetary Science Letters, 2009, 284, 527-537.	4.4	85
20	Theoretical calculation of oxygen isotope fractionation factors in carbonate systems. Geochimica Et Cosmochimica Acta, 2008, 72, 3642-3660.	3.9	123
21	Role of oceanic plateaus in the initiation of subduction and origin of continental crust. Geology, 2008, 36, 583.	4.4	120
22	Queen Maud block: A newly recognized Paleoproterozoic (2.4–2.5 Ga) terrane in northwest Laurentia. Geology, 2007, 35, 707.	4.4	66
23	In situ petrographic thin section U–Pb dating of zircon, monazite, and titanite using laser ablation–MC–ICP-MS. International Journal of Mass Spectrometry, 2006, 253, 87-97.	1.5	147
24	1. Equilibrium Oxygen, Hydrogen and Carbon Isotope Fractionation Factors Applicable to Geologic Systems., 2001,, 1-82.		32
25	Geochemical and Nd-Pb-O isotope systematics of granites from the Taltson Magmatic Zone, NE Alberta: implications for early Proterozoic tectonics in western Laurentia. Precambrian Research, 2000, 102, 221-249.	2.7	53
26	Tectonic setting of the Taltson magmatic zone at $1.9 \hat{A}$ – 2.0 Ga: a granitoid-based perspective. Canadian Journal of Earth Sciences, 2000, 37, 1597-1609.	1.3	60
27	A new technique for determining equilibrium hydrogen isotope fractionation factors using the ion microprobe: application to the epidote-water system. Geochimica Et Cosmochimica Acta, 1999, 63, 1-10.	3.9	69
28	Oxygen isotope fractionations in muscovite, phlogopite, and rutile. Geochimica Et Cosmochimica Acta, 1996, 60, 2595-2608.	3.9	93
29	Preservation of oxygen isotope compositions in granulites from Northwestern Canada and Enderby Land, Antarctica: implications for high-temperature isotopic thermometry. Contributions To Mineralogy and Petrology, 1996, 125, 213-224.	3.1	44
30	Exsolution-enhanced oxygen exchange: Implications for oxygen isotope closure temperatures in minerals. Geology, 1994, 22, 751.	4.4	10
31	Strategies for high-temperature oxygen isotope thermometry: a worked example from the Laramie Anorthosite Complex, Wyoming, USA. Earth and Planetary Science Letters, 1993, 117, 407-422.	4.4	43
32	Geochemistry of high-grade supracrustal rocks from the Kerala Khondalite Belt and adjacent massif charnockites, South India. Precambrian Research, 1992, 55, 469-489.	2.7	85
33	Oxygen and carbon isotope fractionations between CO2 and calcite. Geochimica Et Cosmochimica Acta, 1991, 55, 2867-2882.	3.9	351
34	Isotopic evidence for involvement of CO2-bearing magmas in granulite formation. Nature, 1991, 354, 60-63.	27.8	47
35	Oxygen isotope fractionations involving diopside, forsterite, magnetite, and calcite: Application to geothermometry. Geochimica Et Cosmochimica Acta, 1989, 53, 2985-2995.	3.9	461
36	The Granulite Uncertainty Principle: Limitations on Thermobarometry in Granulites. Journal of Geology, 1989, 97, 435-450.	1.4	380

#	Article	IF	CITATIONS
37	Metamorphic P-T Conditions of the Kerala (South India) Khondalite Belt, a Granulite Facies Supracrustal Terrain. Journal of Geology, 1987, 95, 343-358.	1.4	162