Benoit Scheid

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1085686/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Linear stability analysis of nonisothermal glass fiber drawing. Physical Review Fluids, 2022, 7, .	2.5	1
2	On the effect of electrostatic surface forces on dielectric falling films. Journal of Fluid Mechanics, 2021, 906, .	3.4	6
3	Two-dimensional modelling of transient capillary driven damped micro-oscillations and self-alignment of objects in microassembly. Journal of Fluid Mechanics, 2021, 910, .	3.4	2
4	Hydrodynamic-driven morphogenesis of karst draperies: spatio-temporal analysis of the two-dimensional impulse response. Journal of Fluid Mechanics, 2021, 910, .	3.4	7
5	Dynamics of the jet wiping process via integral models. Journal of Fluid Mechanics, 2021, 911, .	3.4	7
6	Concentration Gradients in Material Sciences: Methods to Design and Biomedical Applications. Advanced Functional Materials, 2021, 31, 2009005.	14.9	38
7	Effect of insoluble surfactants on a thermocapillary flow. Physics of Fluids, 2021, 33, .	4.0	5
8	Statics and dynamics of a viscous ligament drawn out of a pure-liquid bath. Journal of Fluid Mechanics, 2021, 922, .	3.4	6
9	Dip-coating flow in the presence of two immiscible liquids. Journal of Fluid Mechanics, 2021, 922, .	3.4	2
10	Spanwise structuring and rivulet formation in suspended falling liquid films. Physical Review Fluids, 2021, 6, .	2.5	2
11	Hydrodynamic-driven morphogenesis of karst draperies: spatio-temporal analysis of the two-dimensional impulse response – CORRIGENDUM. Journal of Fluid Mechanics, 2021, 926, .	3.4	0
12	An alternative choice of the boundary condition for the arbitrary Lagrangian-Eulerian method. Journal of Computational Physics, 2021, 443, 110494.	3.8	4
13	Influence of the inlet velocity profile on the flow stability in a symmetric channel expansion. Journal of Fluid Mechanics, 2021, 909, .	3.4	3
14	A practical method to characterize proton exchange membrane fuel cell catalyst layer topography: Application to two coating techniques and two carbon supports. Thin Solid Films, 2020, 695, 137751.	1.8	7
15	Natural break-up and satellite formation regimes of surfactant-laden liquid threads. Journal of Fluid Mechanics, 2020, 883, .	3.4	23
16	Bubbles determine the amount of alcohol in Mezcal. Scientific Reports, 2020, 10, 11014.	3.3	11
17	Microfluidic droplet generation based on non-embedded co-flow-focusing using 3D printed nozzle. Scientific Reports, 2020, 10, 21616.	3.3	38
18	Lifetime of Surface Bubbles in Surfactant Solutions. Langmuir, 2020, 36, 7749-7764.	3.5	17

#	Article	IF	CITATIONS
19	On the effect of flow restrictions on the nucleation behavior of molecules in tubular flow Nucleators. Journal of Flow Chemistry, 2020, 10, 241-249.	1.9	7
20	Delayed bubble entrapment during the drop impact on a bounded liquid bath. AIP Advances, 2019, 9, .	1.3	4
21	The creation and testing of a fully continuous tubular crystallization device suited for incorporation into flow chemistry setups. Journal of Flow Chemistry, 2019, 9, 237-249.	1.9	8
22	The coupling of in-flow reaction with continuous flow seedless tubular crystallization. Reaction Chemistry and Engineering, 2019, 4, 516-522.	3.7	10
23	Controlling the lifetime of antibubbles. Advances in Colloid and Interface Science, 2019, 270, 73-86.	14.7	29
24	Mass transfer around bubbles flowing in cylindrical microchannels. Journal of Fluid Mechanics, 2019, 869, 110-142.	3.4	11
25	Bubble dynamics in microchannels: inertial and capillary migration forces. Journal of Fluid Mechanics, 2018, 842, 215-247.	3.4	24
26	Prediction of two-dimensional dripping onset of a liquid film under an inclined plane. International Journal of Multiphase Flow, 2018, 104, 286-293.	3.4	19
27	Three-dimensional Rayleigh–Taylor instability under a unidirectional curved substrate. Journal of Fluid Mechanics, 2018, 837, 19-47.	3.4	19
28	Dewetting of Thin Liquid Films Surrounding Air Bubbles in Microchannels. Langmuir, 2018, 34, 1363-1370.	3.5	22
29	Adaptive stitching for meso-scale printing with two-photon lithography. Additive Manufacturing, 2018, 21, 589-597.	3.0	16
30	Bubble dynamics in microchannels: inertial and capillary migration forces – CORRIGENDUM. Journal of Fluid Mechanics, 2018, 855, 1242-1245.	3.4	5
31	Continuous-Flow Tubular Crystallization To Discriminate between Two Competing Crystal Polymorphs. 1. Cooling Crystallization. Crystal Growth and Design, 2018, 18, 6431-6439.	3.0	26
32	Continuous-Flow Tubular Crystallization To Discriminate between Two Competing Crystal Polymorphs. 2. Antisolvent Crystallization. Crystal Growth and Design, 2018, 18, 6440-6447.	3.0	14
33	How to measure the thickness of a lubrication film in a pancake bubble with a single snapshot?. Applied Physics Letters, 2018, 113, .	3.3	2
34	WaveMaker: The three-dimensional wave simulation tool for falling liquid films. SoftwareX, 2018, 7, 211-216.	2.6	8
35	Influence of Soluble Surfactants and Deformation on the Dynamics of Centered Bubbles in Cylindrical Microchannels. Langmuir, 2018, 34, 10048-10062.	3.5	24
36	Experimental investigations of liquid falling films flowing under an inclined planar substrate. Physical Review Fluids, 2018, 3, .	2.5	24

#	Article	IF	CITATIONS
37	Zero overlap stitching of microlens arrays with two-photon polymerisation. , 2018, , .		1
38	Continuous separation, with microfluidics, of the components of a ternary mixture: from vacuum to purge gas pervaporation. Microfluidics and Nanofluidics, 2017, 21, 1.	2.2	4
39	Low Kapitza falling liquid films. Chemical Engineering Science, 2017, 170, 122-138.	3.8	24
40	The break-up of free films pulled out of a pure liquid bath. Journal of Fluid Mechanics, 2017, 811, 499-524.	3.4	21
41	Dynamics of falling films on the outside of aÂvertical rotating cylinder: waves, rivulets andÂdripping transitions. Journal of Fluid Mechanics, 2017, 832, 189-211.	3.4	24
42	Twoâ€dimensional modeling of an absorbing falling film in its development zone. AICHE Journal, 2017, 63, 4370-4378.	3.6	0
43	Hydrodynamic waves in films flowing under an inclined plane. Physical Review Fluids, 2017, 2, .	2.5	31
44	Effect of buoyancy on the motion of long bubbles in horizontal tubes. Physical Review Fluids, 2017, 2, .	2.5	11
45	Combined influence of inertia, gravity, and surface tension on the linear stability of Newtonian fiber spinning. Physical Review Fluids, 2017, 2, .	2.5	13
46	Critical inclination for absolute/convective instability transition in inverted falling films. Physics of Fluids, 2016, 28, 044107.	4.0	28
47	A major secretory defect of tumour-infiltrating T lymphocytes due to galectin impairing LFA-1-mediated synapse completion. Nature Communications, 2016, 7, 12242.	12.8	63
48	On the stabilizing effects of neck-in, gravity, and inertia in Newtonian film casting. Physics of Fluids, 2016, 28, .	4.0	10
49	Experimental investigation of thermal structures in regular three-dimensional falling films. European Physical Journal: Special Topics, 2015, 224, 355-368.	2.6	14
50	Bubbly flow and gas–liquid mass transfer in square and circular microchannels for stress-free and rigid interfaces: dissolution model. Microfluidics and Nanofluidics, 2015, 19, 899-911.	2.2	14
51	Bubbly flow and gas–liquid mass transfer in square and circular microchannels for stress-free and rigid interfaces: CFD analysis. Microfluidics and Nanofluidics, 2015, 19, 523-545.	2.2	13
52	Practical mapping of the draw resonance instability in film casting of Newtonian fluids. European Journal of Mechanics, B/Fluids, 2015, 52, 68-75.	2.5	6
53	Phase diagram for the onset of circulating waves and flow reversal in inclined falling films. Journal of Fluid Mechanics, 2015, 763, 322-351.	3.4	25
54	Surfactant-induced rigidity of interfaces: a unified approach to free and dip-coated films. Soft Matter, 2015, 11, 2758-2770.	2.7	45

#	Article	IF	CITATIONS
55	Hydrogen peroxide concentration by pervaporation of a ternary liquid solution in microfluidics. Lab on A Chip, 2015, 15, 504-511.	6.0	13
56	Gas dissolution in antibubble dynamics. Soft Matter, 2014, 10, 7096-7102.	2.7	18
57	Three-dimensional flow structures in laminar falling liquid films. Journal of Fluid Mechanics, 2014, 743, 75-123.	3.4	31
58	Rivulet Structures in Falling Liquid Films. Understanding Complex Systems, 2013, , 435-441.	0.6	1
59	Antibubble Dynamics: The Drainage of an Air Film with Viscous Interfaces. Physical Review Letters, 2012, 109, 264502.	7.8	50
60	Flow and Heat Transfer: Formulation. Applied Mathematical Sciences (Switzerland), 2012, , 21-38.	0.8	0
61	Modeling Methodologies for Moderate Reynolds Number Flows. Applied Mathematical Sciences (Switzerland), 2012, , 145-192.	0.8	0
62	Isothermal Case: Three-Dimensional Flow. Applied Mathematical Sciences (Switzerland), 2012, , 277-308.	0.8	1
63	Isothermal Case: Two-Dimensional Flow. Applied Mathematical Sciences (Switzerland), 2012, , 193-275.	0.8	1
64	Nonisothermal Case: Two- and Three-Dimensional Flow. Applied Mathematical Sciences (Switzerland), 2012, , 309-350.	0.8	0
65	Plate Coating: Influence of Concentrated Surfactants on the Film Thickness. Langmuir, 2012, 28, 3821-3830.	3.5	30
66	Primary Instability. Applied Mathematical Sciences (Switzerland), 2012, , 39-64.	0.8	0
67	Falling Liquid Films. Applied Mathematical Sciences (Switzerland), 2012, , .	0.8	201
68	Thermocapillary-assisted pulling of contact-free liquid films. Physics of Fluids, 2012, 24, 032107.	4.0	8
69	Onset of thermal ripples at the interface of an evaporating liquid under a flow of inert gas. Experiments in Fluids, 2012, 52, 1107-1119.	2.4	24
70	Methodologies for Low-Reynolds Number Flows. Applied Mathematical Sciences (Switzerland), 2012, , 95-144.	0.8	0
71	Open Questions and Suggestions for Further Research. Applied Mathematical Sciences (Switzerland), 2012, , 351-355.	0.8	0
72	Boundary Layer Approximation. Applied Mathematical Sciences (Switzerland), 2012, , 65-93.	0.8	0

#	Article	IF	CITATIONS
73	Newtonian pizza: spinning a viscous sheet. Journal of Fluid Mechanics, 2010, 659, 1-23.	3.4	7
74	Thermocapillary-assisted pulling of thin films: Application to molten metals. Applied Physics Letters, 2010, 97, .	3.3	7
75	Experimental study of dispersion and miscible viscous fingering of initially circular samples in Hele-Shaw cells. Physics of Fluids, 2010, 22, .	4.0	29
76	The role of surface rheology in liquid film formation. Europhysics Letters, 2010, 90, 24002.	2.0	58
77	Lateral shaping and stability of a stretching viscous sheet. European Physical Journal B, 2009, 68, 487-494.	1.5	12
78	On the (de)stabilization of draw resonance due to cooling. Journal of Fluid Mechanics, 2009, 636, 155-176.	3.4	18
79	On the thickness of soap films: an alternative to Frankel's law – CORRIGENDUM. Journal of Fluid Mechanics, 2009, 630, 443-443.	3.4	6
80	Interaction of three-dimensional hydrodynamic and thermocapillary instabilities in film flows. Physical Review E, 2008, 78, 066311.	2.1	37
81	Spontaneous channeling of solitary pulses in heated-film flows. Europhysics Letters, 2008, 84, 64002.	2.0	11
82	On the thickness of soap films: an alternative to Frankel's law. Journal of Fluid Mechanics, 2008, 602, 119-127.	3.4	36
83	Heated falling films. Journal of Fluid Mechanics, 2007, 592, 295-334.	3.4	78
84	Some advances in lubrication-type theories. European Physical Journal: Special Topics, 2007, 146, 377-389.	2.6	3
85	Wave patterns in film flows: modelling and three-dimensional waves. Journal of Fluid Mechanics, 2006, 562, 183.	3.4	120
86	Gravity Level Influence on a Laterally Heated Ferrofluid Submitted to an Oblique Strong Magnetic Field. Zeitschrift Fur Physikalische Chemie, 2006, 220, 199-208.	2.8	0
87	Steady flows of a laterally heated ferrofluid layer: Influence of inclined strong magnetic field and gravity level. Physics of Fluids, 2006, 18, 093602.	4.0	8
88	Thermocapillary long waves in a liquid film flow. Part 1. Low-dimensional formulation. Journal of Fluid Mechanics, 2005, 538, 199.	3.4	100
89	Thermocapillary long waves in a liquid film flow. Part 2. Linear stability and nonlinear waves. Journal of Fluid Mechanics, 2005, 538, 223.	3.4	89
90	Validity domain of the Benney equation including the Marangoni effect for closed and open flows. Journal of Fluid Mechanics, 2005, 527, 303-335.	3.4	95

#	Article	IF	CITATIONS
91	Microgravity investigations of instability and mixing flux in frontal displacement of fluids. Microgravity Science and Technology, 2004, 15, 35-51.	1.4	29
92	On the instability of a falling film due to localized heating. Journal of Fluid Mechanics, 2003, 475, 1-19.	3.4	93
93	Nonlinear evolution of nonuniformly heated falling liquid films. Physics of Fluids, 2002, 14, 4130-4151.	4.0	84
94	Effect of nonuniform wall heating on the three-dimensional secondary instability of falling films. Acta Mechanica, 2002, 156, 79-91.	2.1	12
95	Heat transfer and rivulet structures formation in a falling thin liquid film locally heated. International Journal of Thermal Sciences, 2002, 41, 664-672.	4.9	75
96	Deformation of the Free Surface in a Moving Locally-Heated Thin Liquid Layer. Fluid Dynamics, 2001, 36, 521-528.	0.9	38