
Giyun Kwon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10856000/publications.pdf Version: 2024-02-01

CIVUN KWON

#	Article	IF	CITATIONS
1	Recent Progress in Organic Electrodes for Li and Na Rechargeable Batteries. Advanced Materials, 2018, 30, e1704682.	21.0	366
2	Multi-redox Molecule for High-Energy Redox Flow Batteries. Joule, 2018, 2, 1771-1782.	24.0	123
3	Exploiting Biological Systems: Toward Eco-Friendly and High-Efficiency Rechargeable Batteries. Joule, 2018, 2, 61-75.	24.0	96
4	Phenoxazine as a high-voltage p-type redox center for organic battery cathode materials: small structural reorganization for faster charging and narrow operating voltage. Energy and Environmental Science, 2020, 13, 4142-4156.	30.8	78
5	Charge-transfer complexes for high-power organic rechargeable batteries. Energy Storage Materials, 2019, 20, 462-469.	18.0	70
6	Bio-inspired Molecular Redesign of a Multi-redox Catholyte for High-Energy Non-aqueous Organic Redox Flow Batteries. CheM, 2019, 5, 2642-2656.	11.7	61
7	Biological Redox Mediation in Electron Transport Chain of Bacteria for Oxygen Reduction Reaction Catalysts in Lithium–Oxygen Batteries. Advanced Functional Materials, 2019, 29, 1805623.	14.9	50
8	A p–n fusion strategy to design bipolar organic materials for high-energy-density symmetric batteries. Journal of Materials Chemistry A, 2021, 9, 14485-14494.	10.3	30
9	Versatile Redox-Active Organic Materials for Rechargeable Energy Storage. Accounts of Chemical Research, 2021, 54, 4423-4433.	15.6	27
10	Tunable Redox-Active Triazenyl–Carbene Platforms: A New Class of Anolytes for Non-Aqueous Organic Redox Flow Batteries. ACS Applied Materials & Interfaces, 2020, 12, 37338-37345.	8.0	22
11	Biological Nicotinamide Cofactor as a Redoxâ€Active Motif for Reversible Electrochemical Energy Storage. Angewandte Chemie - International Edition, 2019, 58, 16764-16769.	13.8	19
12	Highly persistent triphenylamine-based catholyte for durable organic redox flow batteries. Energy Storage Materials, 2021, 42, 185-192.	18.0	13
13	Pyrrolinium-Substituted Persistent Zwitterionic Ferrocenate Derivative Enabling the Application of Ferrocene Anolyte. ACS Applied Materials & Interfaces, 2021, 13, 46558-46565.	8.0	11
14	Biological Nicotinamide Cofactor as a Redoxâ€Active Motif for Reversible Electrochemical Energy Storage. Angewandte Chemie, 2019, 131, 16920-16925.	2.0	3
15	In operando visualization of redox flow battery in membrane-free microfluidic platform. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	3
16	Frontispiz: Biological Nicotinamide Cofactor as a Redoxâ€Active Motif for Reversible Electrochemical Energy Storage. Angewandte Chemie, 2019, 131, .	2.0	0
17	Frontispiece: Biological Nicotinamide Cofactor as a Redoxâ€Active Motif for Reversible Electrochemical Energy Storage. Angewandte Chemie - International Edition, 2019, 58, .	13.8	0