
Diego Ingrosso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10850060/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Uremic Toxin Lanthionine Induces Endothelial Cell Mineralization In Vitro. Biomedicines, 2022, 10, 444.	3.2	3
2	Lanthionine, a Novel Uremic Toxin, in the Vascular Calcification of Chronic Kidney Disease: The Role of Proinflammatory Cytokines. International Journal of Molecular Sciences, 2021, 22, 6875.	4.1	7
3	Homocysteine Solution-Induced Response in Aerosol Jet Printed OECTs by Means of Gold and Platinum Gate Electrodes. International Journal of Molecular Sciences, 2021, 22, 11507.	4.1	2
4	DNA Methylation Dysfunction in Chronic Kidney Disease. Genes, 2020, 11, 811.	2.4	16
5	P0095MOLECULAR MECHANISMS OF THE CARDIOVASCULAR EFFECTS OF LANTHIONINE, A NEW UREMIC TOXIN, AND ITS INTERACTIONS WITH THE REDOX MICROENVIRONMENT. Nephrology Dialysis Transplantation, 2020, 35, .	0.7	0
6	Lanthionine and Other Relevant Sulfur Amino Acid Metabolites: Detection of Prospective Uremic Toxins in Serum by Multiple Reaction Monitoring Tandem Mass Spectrometry. Methods in Molecular Biology, 2019, 2007, 9-17.	0.9	5
7	The role of the intestinal microbiota in uremic solute accumulation: a focus on sulfur compounds. Journal of Nephrology, 2019, 32, 733-740.	2.0	22
8	Uremic Toxin Lanthionine Interferes with the Transsulfuration Pathway, Angiogenetic Signaling and Increases Intracellular Calcium. International Journal of Molecular Sciences, 2019, 20, 2269.	4.1	14
9	Homocysteine and chronic kidney disease: an ongoing narrative. Journal of Nephrology, 2019, 32, 673-675.	2.0	17
10	Novel Applications of Lead Acetate and Flow Cytometry Methods for Detection of Sulfur-Containing Molecules. Methods and Protocols, 2019, 2, 13.	2.0	3
11	Zebrafish, a Novel Model System to Study Uremic Toxins: The Case for the Sulfur Amino Acid Lanthionine. International Journal of Molecular Sciences, 2018, 19, 1323.	4.1	11
12	No effect of MTP polymorphisms on PNPLA3 in HCV-correlated steatosis. Infezioni in Medicina, 2018, 26, 244-248.	1.1	2
13	ADAM17, a New Player in the Pathogenesis of Chronic Kidney Disease–Mineral and Bone Disorder. , 2017, 27, 453-457.		17
14	The Sulfur Metabolite Lanthionine: Evidence for a Role as a Novel Uremic Toxin. Toxins, 2017, 9, 26.	3.4	22
15	Divergent behavior of hydrogen sulfide pools and of the sulfur metabolite lanthionine, a novel uremic toxin, in dialysis patients. Biochimie, 2016, 126, 97-107.	2.6	37
16	Renal phenotype in Bardet-Biedl syndrome: a combined defect of urinary concentration and dilution is associated with defective urinary AQP2 and UMOD excretion. American Journal of Physiology - Renal Physiology, 2016, 311, F686-F694.	2.7	27
17	Atherosclerosis determinants in renal disease: how much is homocysteine involved?. Nephrology Dialysis Transplantation, 2016, 31, 860-863.	0.7	13
18	Two Different Serum MiRNA Signatures Correlate with the Clinical Outcome and Histological Subtype in Pleural Malignant Mesothelioma Patients. PLoS ONE, 2015, 10, e0135331.	2.5	40

#	Article	IF	CITATIONS
19	Impact of the Uremic Milieu on the Osteogenic Potential of Mesenchymal Stem Cells. PLoS ONE, 2015, 10, e0116468.	2.5	31
20	miR-17 and -20a Target the Neuron-Derived Orphan Receptor-1 (NOR-1) in Vascular Endothelial Cells. PLoS ONE, 2015, 10, e0141932.	2.5	7
21	Gases as Uremic Toxins: Is There Something in the Air?. Seminars in Nephrology, 2014, 34, 135-150.	1.6	24
22	Hydrogen sulfide reduces cell adhesion and relevant inflammatory triggering by preventing ADAM17â€dependent TNFâ€Î± activation. Journal of Cellular Biochemistry, 2013, 114, 1536-1548.	2.6	38
23	Impact of parathyroidectomy on cardiovascular outcomes and survival in chronic hemodialysis patients with secondary hyperparathyroidism. A retrospective study of 50 cases prior to the calcimimetics era. BMC Surgery, 2013, 13, S4.	1.3	41
24	Altered folate receptor 2 expression in uraemic patients on haemodialysis: implications for folate resistance. Nephrology Dialysis Transplantation, 2013, 28, 1214-1224.	0.7	11
25	Low hydrogen sulphide and chronic kidney disease: a dangerous liaison. Nephrology Dialysis Transplantation, 2012, 27, 486-493.	0.7	47
26	Therapy of Hyperhomocysteinemia in Hemodialysis Patients: Effects of Folates and N-Acetylcysteine. , 2012, 22, 507-514.e1.		14
27	Hyperhomocysteinemia in Chronic Renal Failure: Alternative Therapeutic Strategies. , 2012, 22, 191-194.		16
28	Role of folic acid depletion on homocysteine serum level in children and adolescents with epilepsy and different MTHFR C677T genotypes. Seizure: the Journal of the British Epilepsy Association, 2012, 21, 340-343.	2.0	20
29	Homocysteinylated Albumin Promotes Increased Monocyte-Endothelial Cell Adhesion and Up-Regulation of MCP1, Hsp60 and ADAM17. PLoS ONE, 2012, 7, e31388.	2.5	31
30	The MicroRNA 15a/16–1 Cluster Down-regulates Protein Repair Isoaspartyl Methyltransferase in Hepatoma Cells. Journal of Biological Chemistry, 2011, 286, 43690-43700.	3.4	17
31	Hydrogen Sulfide, a Toxic Gas with Cardiovascular Properties in Uremia: How Harmful Is It?. Blood Purification, 2011, 31, 102-106.	1.8	15
32	Hydrogen sulfide increases after a single hemodialysis session. Kidney International, 2011, 80, 1108-1109.	5.2	5
33	Impaired transmethylation potential in Parkinson's disease patients treated with I-Dopa. Neuroscience Letters, 2010, 468, 287-291.	2.1	20
34	Hydrogen Sulfide, the Third Gaseous Signaling Molecule With Cardiovascular Properties, Is Decreased in Hemodialysis Patients. , 2010, 20, S11-S14.		15
35	Hydrogen sulphide-generating pathways in haemodialysis patients: a study on relevant metabolites and transcriptional regulation of genes encoding for key enzymes. Nephrology Dialysis Transplantation, 2009, 24, 3756-3763.	0.7	78
36	PROGRESS IN UREMIC TOXIN RESEARCH: Hyperhomocysteinemia in Uremia—A Red Flag in a Disrupted Circuit. Seminars in Dialysis, 2009, 22, 351-356.	1.3	39

#	Article	IF	CITATIONS
37	Epigenetics in hyperhomocysteinemic states. A special focus on uremia. Biochimica Et Biophysica Acta - General Subjects, 2009, 1790, 892-899.	2.4	56
38	Is Homocysteine Toxic in Uremia?. , 2008, 18, 12-17.		3
39	Protein Isoaspartate Methyltransferase Prevents Apoptosis Induced by Oxidative Stress in Endothelial Cells: Role of Bcl-XI Deamidation and Methylation. PLoS ONE, 2008, 3, e3258.	2.5	50
40	Plasma protein homocysteinylation in uremia. Clinical Chemistry and Laboratory Medicine, 2007, 45, 1678-82.	2.3	9
41	Accumulation of altered aspartyl residues in erythrocyte proteins from patients with Down's syndrome. FEBS Journal, 2007, 274, 5263-5277.	4.7	35
42	Toxic Effects of Hyperhomocysteinemia in Chronic Renal Failure and in Uremia: Cardiovascular and Metabolic Consequences. Seminars in Nephrology, 2006, 26, 20-23.	1.6	7
43	Hydroxytyrosol, a natural antioxidant from olive oil, prevents protein damage induced by long-wave ultraviolet radiation in melanoma cells. Free Radical Biology and Medicine, 2005, 38, 908-919.	2.9	135
44	Hyperhomocysteinemia and the MTHFR C677T polymorphism promote steatosis and fibrosis in chronic hepatitis C patients. Hepatology, 2005, 41, 995-1003.	7.3	113
45	Hyperhomocysteinemia and macromolecule modifications in uremic patients. Clinical Chemistry and Laboratory Medicine, 2005, 43, 1032-8.	2.3	18
46	Plasma Protein Aspartyl Damage Is Increased in Hemodialysis Patients: Studies on Causes and Consequences. Journal of the American Society of Nephrology: JASN, 2004, 15, 2747-2754.	6.1	37
47	MTHFR C677T polymorphism and skin color: The white man's blackness. Kidney International, 2004, 65, 2444.	5.2	1
48	Hyperhomocysteinemia and cardiovascular disease in uremia: The newest evidence in epidemiology and mechanisms of action. Seminars in Nephrology, 2004, 24, 426-430.	1.6	12
49	Hyperhomocysteinemia and the cardiovascular disease of uremia. Nutrition Research, 2004, 24, 839-849.	2.9	2
50	Homocysteine metabolism in renal failure. Current Opinion in Clinical Nutrition and Metabolic Care, 2004, 7, 53-57.	2.5	42
51	Homocysteine in uremia. American Journal of Kidney Diseases, 2003, 41, S123-S126.	1.9	9
52	Possible mechanisms of homocysteine toxicity. Kidney International, 2003, 63, S137-S140.	5.2	93
53	Folate treatment and unbalanced methylation and changes of allelic expression induced by hyperhomocysteinaemia in patients with uraemia. Lancet, The, 2003, 361, 1693-1699.	13.7	395
54	Protein methylation as a marker of aspartate damage in glucose-6-phosphate dehydrogenase-deficient erythrocytes. FEBS Journal, 2002, 269, 2032-2039.	0.2	42

#	Article	IF	CITATIONS
55	Plasma proteins containing damaged L-isoaspartyl residues are increased in uremia: Implications for mechanism. Kidney International, 2001, 59, 2299-2308.	5.2	26
56	Homocysteine and transmethylations in uremia. Kidney International, 2001, 59, S230-S233.	5.2	24
57	UVA irradiation induces L-isoaspartyl formation in melanoma cell proteins. Free Radical Biology and Medicine, 2001, 31, 1-9.	2.9	39
58	Metabolic consequences of hyperhomocysteinemia in uremia. American Journal of Kidney Diseases, 2001, 38, S85-S90.	1.9	20
59	Increased methyl esterification of altered aspartyl residues in erythrocyte membrane proteins in response to oxidative stress. FEBS Journal, 2000, 267, 4397-4405.	0.2	82
60	Occurrence of Dâ€aspartic acid and Nâ€methylâ€Dâ€aspartic acid in rat neuroendocrine tissues and their role in the modulation of luteinizing hormone and growth hormone release. FASEB Journal, 2000, 14, 699-714.	0.5	212
61	Homocysteine, a New Crucial Element in the Pathogenesis of Uremic Cardiovascular Complications. Mineral and Electrolyte Metabolism, 1999, 25, 95-99.	1.1	20
62	Moderate hyperhomocysteinaemia and retinopathy in insulin-dependent diabetes. Lancet, The, 1997, 349, 1102-1103.	13.7	43
63	Enzymatic Detection of l-Isoaspartyl Residues in Food Proteins and the Protective Properties of Trehalose. Journal of Nutritional Biochemistry, 1997, 8, 535-540.	4.2	8
64	Influence of Osmotic Stress on Protein Methylation in Resealed Erythrocytes. FEBS Journal, 1997, 244, 918-922.	0.2	11
65	Cytoskeletal behaviour in spectrin and in band 3 deficient spherocytic red cells: evidence for a differentiated splenic conditioning role. British Journal of Haematology, 1996, 93, 38-41.	2.5	22
66	Membrane protein damage and methylation reactions in chronic renal failure. Kidney International, 1996, 50, 358-366.	5.2	62
67	Increased Membrane-Protein Methylation in Hereditary Spherocytosis. A Marker of Cytoskeletal Disarray. FEBS Journal, 1995, 228, 894-898.	0.2	0
68	Mechanism of erythrocyte accumulation of methylation inhibitor S-adenosylhomocysteine in uremia. Kidney International, 1995, 47, 247-253.	5.2	109
69	Increased Membrane-Protein Methylation in Hereditary Spherocytosis. A Marker of Cytoskeletal Disarray. FEBS Journal, 1995, 228, 894-898.	0.2	16
70	Distinct C-terminal sequences of isozymes I and II of the human erythrocyte L-isoaspartyl/D-aspartyl protein methyltransferase. Biochemical and Biophysical Research Communications, 1991, 175, 351-358.	2.1	23
71	Human Erythrocyte D-Aspartyl/L-Isoaspartyl Methyltransferases: Enzymes that Recognize Age-Damaged Proteins. Advances in Experimental Medicine and Biology, 1991, 307, 263-276.	1.6	9
72	Hypotheses on the Physiological Role of Enzymatic Protein Methyl Esterification Using Human Erythrocytes as a Model System. Advances in Experimental Medicine and Biology, 1991, 307, 149-160.	1.6	5

#	Article	IF	CITATIONS
73	Specificity of endoproteinase Asp-N (Pseudomonas fragi): Cleavage at glutamyl residues in two proteins. Biochemical and Biophysical Research Communications, 1989, 162, 1528-1534.	2.1	42
74	Enzymatic methyl esterification of a deamidated form of mouse epidermal growth factor. International Journal of Peptide and Protein Research, 1989, 33, 397-402.	0.1	17
75	Mechanism of Protein Carboxyl Methyl Transfer Reactions: Structural Requirements of Methyl Accepting Substrates. , 1988, 231, 229-245.		7
76	Enzymatic methyl esterification of synthetic tripeptides: structural requirements of the peptide substrate. Detection of the reaction products by fast-atom-bombardment mass spectrometry. FEBS Journal, 1988, 177, 233-239.	0.2	17
77	Enzymatic basis for the calcium-induced decrease of membrane protein methyl esterification in intact erythrocytes. Evidence for an impairment of S-adenosylmethionine synthesis. FEBS Journal, 1986, 154, 489-495.	0.2	16
78	Increased methyl esterification of membrane proteins in aged red-blood cells. Preferential esterification of ankyrin and band-4.1 cytoskeletal proteins. FEBS Journal, 1983, 135, 25-31.	0.2	48