David Dubuc

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10846801/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization of the Denaturation of Bovine Serum Albumin (BSA) Protein by Means of a Differential-Mode Microwave Microfluidic Sensor Based on Slot Resonators. IEEE Sensors Journal, 2022, 22, 14075-14083.	4.7	7
2	Microwave Microfabricated Sensor Dedicated to the Dielectric Characterization of Biological Microtissues. , 2022, , .		2
3	Microwave Sensor Dedicated to the Determination of the Dielectric Properties of 3D Biological Models from 500MHz to 20CHz. , 2021, , .		3
4	Evaluation of a Microwave Biosensor for On-Chip Electroporation and Efficient Molecular Delivery Into Mammalian Cells. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 2019, 3, 224-231.	3.4	1
5	Microwave based resonant biosensors for multiple molecular concentrations quantification. , 2019, , .		1
6	Split Ring Resonator-Based Microwave Fluidic Sensors for Electrolyte Concentration Measurements. IEEE Sensors Journal, 2019, 19, 2562-2569.	4.7	146
7	Lymphatic Vasculature Requires Estrogen Receptor-α Signaling to Protect From Lymphedema. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 1346-1357.	2.4	47
8	Highly-Sensitive Microwave Sensors Based on Open Complementary Split Ring Resonators (OCSRRs) for Dielectric Characterization and Solute Concentration Measurement in Liquids. IEEE Access, 2018, 6, 48324-48338.	4.2	149
9	Microwave Monitoring of Single Cell Monocytes Subjected to Electroporation. IEEE Transactions on Microwave Theory and Techniques, 2017, 65, 3512-3518.	4.6	39
10	Microwave Microfluidic Sensor Based on a Microstrip Splitter/Combiner Configuration and Split Ring Resonators (SRRs) for Dielectric Characterization of Liquids. IEEE Sensors Journal, 2017, 17, 6589-6598.	4.7	275
11	Microwave permittivity extraction of individual biological cells submitted to different stimuli. , 2017, , .		12
12	Microwave-Based Microfluidic Sensor for Non-Destructive and Quantitative Glucose Monitoring in Aqueous Solution. Sensors, 2016, 16, 1733.	3.8	57
13	Microwave dielectric spectroscopy for single cell irreversible electroporation monitoring. , 2016, , .		10
14	Microwaving Biological Cells: Intracellular Analysis with Microwave Dielectric Spectroscopy. IEEE Microwave Magazine, 2015, 16, 87-96.	0.8	79
15	Quantitative detection of carbon nanotubes in biological samples by an original method based on microwave permittivity measurements. Carbon, 2015, 81, 535-545.	10.3	17
16	Microwave dielectric spectroscopy for biological cells suspensions analysis and proliferation evaluation. , 2014, , .		2
17	A Microwave and Microfluidic Planar Resonator for Efficient and Accurate Complex Permittivity Characterization of Aqueous Solutions. IEEE Transactions on Microwave Theory and Techniques, 2013, 61, 972-978.	4.6	249
18	Recent Advances in Microwave-Based Dielectric Spectroscopy at the Cellular Level for Cancer Investigations. IEEE Transactions on Microwave Theory and Techniques, 2013, 61, 2023-2030.	4.6	156

DAVID DUBUC

#	Article	IF	CITATIONS
19	Microwave-based biosensor for on-chip biological cell analysis. Analog Integrated Circuits and Signal Processing, 2013, 77, 135-142.	1.4	14
20	Broadband microwave biosensing based on interdigitated capacitor for Lab-on-Chip applications. , 2012, , .		3
21	Accurate Nanoliter Liquid Characterization Up to 40 GHz for Biomedical Applications: Toward Noninvasive Living Cells Monitoring. IEEE Transactions on Microwave Theory and Techniques, 2012, 60, 4171-4177.	4.6	81
22	Liquid-based tunable loaded-line phase shifter. , 2012, , .		4
23	Resonant based microwave biosensor for biological cells discrimination. , 2010, , .		21
24	New broadband and contact less RF / microfluidic sensor dedicated to bioengineering. , 2009, , .		15
25	Integrated Broadband Microwave and Microfluidic Sensor Dedicated to Bioengineering. IEEE Transactions on Microwave Theory and Techniques, 2009, 57, 3246-3253.	4.6	227
26	Microwave Biosensors for Noninvasive Molecular and Cellular Investigations. , 0, , 124-153.		0