
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1084580/publications.pdf Version: 2024-02-01

ΙΟΗΝ Τ ΗΛΡΤΥ

#	Article	IF	CITATIONS
1	γδT cells burst malaria's bubble. Nature Immunology, 2021, 22, 270-272.	14.5	2
2	Protective function and durability of mouse lymph node-resident memory CD8+ T cells. ELife, 2021, 10, .	6.0	14
3	Severity of Sepsis Determines the Degree of Impairment Observed in Circulatory and Tissue-Resident Memory CD8 T Cell Populations. Journal of Immunology, 2021, 207, 1871-1881.	0.8	10
4	NK Cell–Derived IL-10 Supports Host Survival during Sepsis. Journal of Immunology, 2021, 206, 1171-1180.	0.8	19
5	Influenza-Specific Lung-Resident Memory CD8 ⁺ T Cells. Cold Spring Harbor Perspectives in Biology, 2021, 13, a037978.	5.5	11
6	Cutting Edge: Subunit Booster Vaccination Confers Sterilizing Immunity against Liver-Stage Malaria in Mice Initially Primed with a Weight-Normalized Dose of Radiation-Attenuated Sporozoites. Journal of Immunology, 2021, 207, 2631-2635.	0.8	1
7	Expeditious recruitment of circulating memory CD8 TÂcells to the liver facilitates control of malaria. Cell Reports, 2021, 37, 109956.	6.4	26
8	You Shall Not Pass: Memory CD8ÂT Cells in Liver-Stage Malaria. Trends in Parasitology, 2020, 36, 147-157.	3.3	21
9	p53 Hinders CRISPR/Cas9-Mediated Targeted Gene Disruption in Memory CD8 T Cells In Vivo. Journal of Immunology, 2020, 205, 2222-2230.	0.8	9
10	Peripherally induced brain tissue–resident memory CD8+ T cells mediate protection against CNS infection. Nature Immunology, 2020, 21, 938-949.	14.5	75
11	RPL-6: An Achilles Needle in the Malaria Haystack?. Trends in Parasitology, 2020, 36, 651-653.	3.3	0
12	Worry and FRET: ROS Production Leads to Fluorochrome Tandem Degradation and impairs Interpretation of Flow Cytometric Results. Immunity, 2020, 52, 419-421.	14.3	6
13	Balancing in a black box: Potential immunomodulatory roles for TGF-β signaling during blood-stage malaria. Virulence, 2020, 11, 159-169.	4.4	21
14	Diverse CD8ÂT Cell Responses to Viral Infection Revealed by the Collaborative Cross. Cell Reports, 2020, 31, 107508.	6.4	16
15	Therapeutic intervention in relapsing autoimmune demyelinating disease through induction of myelin-specific regulatory CD8 T cell responses. Journal of Translational Autoimmunity, 2019, 2, 100010.	4.0	4
16	Sepsis-Induced State of Immunoparalysis Is Defined by Diminished CD8 T Cell–Mediated Antitumor Immunity. Journal of Immunology, 2019, 203, 725-735.	0.8	21
17	Protective role for the N-terminal domain of α-dystroglycan in Influenza A virus proliferation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11396-11401.	7.1	13
18	Monocyte-Derived CD11c+ Cells Acquire Plasmodium from Hepatocytes to Prime CD8ÂT Cell Immunity to Liver-Stage Malaria. Cell Host and Microbe, 2019, 25, 565-577.e6.	11.0	50

#	Article	IF	CITATIONS
19	T cell-mediated immunity to malaria. Nature Reviews Immunology, 2019, 19, 457-471.	22.7	173
20	Universal Principled Review: A Community-Driven Method to Improve Peer Review. Cell, 2019, 179, 1441-1445.	28.9	6
21	Bystander responses impact accurate detection of murine and human antigen-specific CD8+ T cells. Journal of Clinical Investigation, 2019, 129, 3894-3908.	8.2	29
22	Repeated Antigen Exposure Extends the Durability of Influenza-Specific Lung-Resident Memory CD8+ T Cells and Heterosubtypic Immunity. Cell Reports, 2018, 24, 3374-3382.e3.	6.4	76
23	Memory CD8 T cells mediate severe immunopathology following respiratory syncytial virus infection. PLoS Pathogens, 2018, 14, e1006810.	4.7	94
24	Dynamics of influenza-induced lung-resident memory T cells underlie waning heterosubtypic immunity. Science Immunology, 2017, 2, .	11.9	250
25	Perforin Expression by CD8 T Cells Is Sufficient To Cause Fatal Brain Edema during Experimental Cerebral Malaria. Infection and Immunity, 2017, 85, .	2.2	51
26	Influenzaâ€induced lung T _{rm} : not all memories last forever. Immunology and Cell Biology, 2017, 95, 651-655.	2.3	19
27	The transcription factor Runx3 guards cytotoxic CD8+ effector T cells against deviation towards follicular helper T cell lineage. Nature Immunology, 2017, 18, 931-939.	14.5	113
28	Enzymatic synthesis of core 2 O-glycans governs the tissue-trafficking potential of memory CD8 ⁺ T cells. Science Immunology, 2017, 2, .	11.9	40
29	Characterization of Inner and Outer Membrane Proteins from <i>Francisella tularensis</i> Strains LVS and Schu S4 and Identification of Potential Subunit Vaccine Candidates. MBio, 2017, 8, .	4.1	17
30	Regulatory T cells impede acute and long-term immunity to blood-stage malaria through CTLA-4. Nature Medicine, 2017, 23, 1220-1225.	30.7	107
31	Suppression of autoimmune demyelinating disease by preferential stimulation of CNS-specific CD8 T cells using Listeria-encoded neuroantigen. Scientific Reports, 2017, 7, 1519.	3.3	12
32	A T Cell Receptor Locus Harbors a Malaria-Specific Immune Response Gene. Immunity, 2017, 47, 835-847.e4.	14.3	20
33	Differential Requirements for Tcf1 Long Isoforms in CD8+ and CD4+ T Cell Responses to Acute Viral Infection. Journal of Immunology, 2017, 199, 911-919.	0.8	53
34	Revealing the Complexity in CD8 T Cell Responses to Infection in Inbred C57B/6 versus Outbred Swiss Mice. Frontiers in Immunology, 2017, 8, 1527.	4.8	25
35	Polymicrobial sepsis impairs bystander recruitment of effector cells to infected skin despite optimal sensing and alarming function of skin resident memory CD8 T cells. PLoS Pathogens, 2017, 13, e1006569.	4.7	47
36	Antigen Exposure History Defines CD8 T Cell Dynamics and Protection during Localized Pulmonary Infections. Frontiers in Immunology, 2017, 8, 40.	4.8	9

#	Article	IF	CITATIONS
37	Differential requirements for myeloid leukemia IFN-Î ³ conditioning determine graft-versus-leukemia resistance and sensitivity. Journal of Clinical Investigation, 2017, 127, 2765-2776.	8.2	18
38	Mechanisms of Adaptive Immunity to Plasmodium Liver-Stage Infection: The Known and Unknown. , 2017, , 27-45.		0
39	Regulatory issues in immunity to liver and blood-stage malaria. Current Opinion in Immunology, 2016, 42, 91-97.	5.5	30
40	CD8 + T Cells Utilize Highly Dynamic Enhancer Repertoires and Regulatory Circuitry in Response to Infections. Immunity, 2016, 45, 1341-1354.	14.3	79
41	Regulatory IgDhi B Cells Suppress T Cell Function via IL-10 and PD-L1 during Progressive Visceral Leishmaniasis. Journal of Immunology, 2016, 196, 4100-4109.	0.8	54
42	Discriminating Protective from Nonprotective <i>Plasmodium</i> -Specific CD8+ T Cell Responses. Journal of Immunology, 2016, 196, 4253-4262.	0.8	35
43	Manipulating Memory CD8 T Cell Numbers by Timed Enhancement of IL-2 Signals. Journal of Immunology, 2016, 197, 1754-1761.	0.8	12
44	Exposure of Human CD4 T Cells to IL-12 Results in Enhanced TCR-Induced Cytokine Production, Altered TCR Signaling, and Increased Oxidative Metabolism. PLoS ONE, 2016, 11, e0157175.	2.5	43
45	Paradoxical Increase in Mortality and Rupture of Intracranial Aneurysms in Microsomal Prostaglandin E2 Synthase Type 1-Deficient Mice. Neurosurgery, 2015, 77, 613-620.	1.1	13
46	Impact of Acute Malaria on Pre-Existing Antibodies to Viral and Vaccine Antigens in Mice and Humans. PLoS ONE, 2015, 10, e0125090.	2.5	16
47	The Role of II-12 and Type I Interferon in Governing the Magnitude of CD8 T Cell Responses. Advances in Experimental Medicine and Biology, 2015, 850, 31-41.	1.6	9
48	Enhancing Dendritic Cell–based Immunotherapy with IL-2/Monoclonal Antibody Complexes for Control of Established Tumors. Journal of Immunology, 2015, 195, 4537-4544.	0.8	12
49	Inflammatory IL-15 is required for optimal memory T cell responses. Journal of Clinical Investigation, 2015, 125, 3477-3490.	8.2	87
50	The Timing of Stimulation and IL-2 Signaling Regulate Secondary CD8 T Cell Responses. PLoS Pathogens, 2015, 11, e1005199.	4.7	14
51	Phenotypic and Functional Alterations in Circulating Memory CD8 T Cells with Time after Primary Infection. PLoS Pathogens, 2015, 11, e1005219.	4.7	46
52	γδT cells and immunity to human malaria in endemic regions. Annals of Translational Medicine, 2015, 3, S22.	1.7	9
53	Cutting Edge: Expression of FcÎ ³ RIIB Tempers Memory CD8 T Cell Function In Vivo. Journal of Immunology, 2014, 192, 35-39.	0.8	51
54	Tim-3 Directly Enhances CD8 T Cell Responses to Acute <i>Listeria monocytogenes</i> Infection. Journal of Immunology, 2014, 192, 3133-3142.	0.8	76

JOHN T HARTY

#	Article	IF	CITATIONS
55	CD8 T-cell-mediated protection against liver-stage malaria: lessons from a mouse model. Frontiers in Microbiology, 2014, 5, 272.	3.5	56
56	Microsphere priming facilitates induction of potent therapeutic <scp>T</scp> â€cell immune responses against autochthonous liver cancers. European Journal of Immunology, 2014, 44, 1213-1224.	2.9	17
57	Splenectomy Alters Distribution and Turnover but not Numbers or Protective Capacity of de novo Generated Memory CD8ââ,¬â€°T-Cells. Frontiers in Immunology, 2014, 5, 568.	4.8	8
58	Impact of Inflammatory Cytokines on Effector and Memory CD8+ T Cells. Frontiers in Immunology, 2014, 5, 295.	4.8	150
59	Correlates of protective immunity following whole sporozoite vaccination against malaria. Immunologic Research, 2014, 59, 166-176.	2.9	38
60	Instructing the Instructor: Tissue-Resident T Cells Activate Innate Immunity. Cell Host and Microbe, 2014, 16, 421-423.	11.0	6
61	CD8 T cell independent immunity after single dose infection-treatment-vaccination (ITV) against Plasmodium yoelii. Vaccine, 2014, 32, 483-491.	3.8	24
62	IL-12 and type I interferon prolong the division of activated CD8 T cells by maintaining high-affinity IL-2 signaling in vivo. Journal of Experimental Medicine, 2014, 211, 105-120.	8.5	131
63	IL-15 regulates memory CD8+ T cell O-glycan synthesis and affects trafficking. Journal of Clinical Investigation, 2014, 124, 1013-1026.	8.2	78
64	Pathogen-Specific Inflammatory Milieux Tune the Antigen Sensitivity of CD8+ T Cells by Enhancing T Cell Receptor Signaling. Immunity, 2013, 38, 140-152.	14.3	136
65	Lung Airway-Surveilling CXCR3hi Memory CD8+ T Cells Are Critical for Protection against Influenza A Virus. Immunity, 2013, 39, 939-948.	14.3	198
66	One Bug or Another: Promiscuous T Cells Form Lifelong Memory. Immunity, 2013, 38, 207-208.	14.3	1
67	Aged Mice Exhibit a Severely Diminished CD8 T Cell Response following Respiratory Syncytial Virus Infection. Journal of Virology, 2013, 87, 12694-12700.	3.4	27
68	Cutting Edge: Rapid Boosting of Cross-Reactive Memory CD8 T Cells Broadens the Protective Capacity of the Flumist Vaccine. Journal of Immunology, 2013, 190, 3854-3858.	0.8	37
69	In vivo CD8+ T Cell Dynamics in the Liver of Plasmodium yoelii Immunized and Infected Mice. PLoS ONE, 2013, 8, e70842.	2.5	24
70	Antigen Experience Shapes Phenotype and Function of Memory Th1 Cells. PLoS ONE, 2013, 8, e65234.	2.5	11
71	Probing CD8 T Cell Responses with Listeria monocytogenes Infection. Advances in Immunology, 2012, 113, 51-80.	2.2	47
72	Therapeutic blockade of PD-L1 and LAG-3 rapidly clears established blood-stage Plasmodium infection. Nature Immunology, 2012, 13, 188-195.	14.5	438

#	Article	IF	CITATIONS
73	Population Dynamics of Naive and Memory CD8 T Cell Responses after Antigen Stimulations In Vivo. Journal of Immunology, 2012, 188, 1255-1265.	0.8	52
74	Division-linked generation of death-intermediates regulates the numerical stability of memory CD8 T cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6199-6204.	7.1	33
75	Whole parasite vaccination approaches for prevention of malaria infection. Trends in Immunology, 2012, 33, 247-254.	6.8	66
76	Tracking the Total CD8 T Cell Response Following Whole Plasmodium Vaccination. Methods in Molecular Biology, 2012, 923, 493-504.	0.9	10
77	Perforin plays an unexpected role in regulating Tâ€cell contraction during prolonged <i>Listeria monocytogenes</i> infection. European Journal of Immunology, 2012, 42, 629-640.	2.9	6
78	Epitope specificity of memory <scp>CD</scp> 8 ⁺ <scp>T</scp> cells dictates vaccinationâ€induced mortality in <scp>LCMV</scp> â€infected perforinâ€deficient mice. European Journal of Immunology, 2012, 42, 1488-1499.	2.9	6
79	Strategies and Implications for Prime-Boost Vaccination to Generate Memory CD8 T Cells. Advances in Experimental Medicine and Biology, 2011, 780, 69-83.	1.6	35
80	Superior Antimalarial Immunity after Vaccination with Late Liver Stage-Arresting Genetically Attenuated Parasites. Cell Host and Microbe, 2011, 9, 451-462.	11.0	209
81	Differential Role of "Signal 3―Inflammatory Cytokines in Regulating CD8 T Cell Expansion and Differentiation in vivo. Frontiers in Immunology, 2011, 2, 4.	4.8	19
82	NFIL3/E4BP4 is a key transcription factor for CD8α+ dendritic cell development. Blood, 2011, 117, 6193-6197.	1.4	161
83	Immunologic considerations for generating memory CD8 T cells through vaccination. Cellular Microbiology, 2011, 13, 925-933.	2.1	65
84	The relevance of non-human primate and rodent malaria models for humans. Malaria Journal, 2011, 10, 23.	2.3	109
85	Secondary CD8 ⁺ Tâ€cell responses are controlled by systemic inflammation. European Journal of Immunology, 2011, 41, 1321-1333.	2.9	27
86	Protective Capacity of Memory CD8+ T Cells Is Dictated by Antigen Exposure History and Nature of the Infection. Immunity, 2011, 34, 781-793.	14.3	106
87	Plasmodium–Host Interactions Directly Influence the Threshold of Memory CD8 T Cells Required for Protective Immunity. Journal of Immunology, 2011, 186, 5873-5884.	0.8	45
88	The Impact of Pre-Existing Memory on Differentiation of Newly Recruited Naive CD8 T Cells. Journal of Immunology, 2011, 187, 2923-2931.	0.8	14
89	Cutting Edge: Attrition of Plasmodium-Specific Memory CD8 T Cells Results in Decreased Protection That Is Rescued by Booster Immunization. Journal of Immunology, 2011, 186, 3836-3840.	0.8	21
90	Naive, effector and memory CD8 T-cell trafficking: parallels and distinctions. Immunotherapy, 2011, 3, 1223-1233.	2.0	135

#	Article	IF	CITATIONS
91	Modulating numbers and phenotype of CD8 ⁺ T cells in secondary immune responses. European Journal of Immunology, 2010, 40, 1916-1926.	2.9	33
92	Repetitive Antigen Stimulation Induces Stepwise Transcriptome Diversification but Preserves a Core Signature of Memory CD8+ T Cell Differentiation. Immunity, 2010, 33, 128-140.	14.3	224
93	Differentiation and Persistence of Memory CD8+ T Cells Depend on T Cell Factor 1. Immunity, 2010, 33, 229-240.	14.3	555
94	Predicting CD62L expression during the CD8 ⁺ T ell response <i>in vivo</i> . Immunology and Cell Biology, 2010, 88, 157-164.	2.3	29
95	Exploiting cross-priming to generate protective CD8 T-cell immunity rapidly. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12198-12203.	7.1	51
96	The Role of Inflammation in the Generation and Maintenance of Memory T Cells. Advances in Experimental Medicine and Biology, 2010, 684, 42-56.	1.6	16
97	T Cell Epitope Specificity and Pathogenesis of Mouse Hepatitis Virus-1–Induced Disease in Susceptible and Resistant Hosts. Journal of Immunology, 2010, 185, 1132-1141.	0.8	24
98	Constitutive Activation of Wnt Signaling Favors Generation of Memory CD8 T Cells. Journal of Immunology, 2010, 184, 1191-1199.	0.8	157
99	Differential Effector Pathways Regulate Memory CD8 T Cell Immunity against Plasmodium berghei versus P. yoelii Sporozoites. Journal of Immunology, 2010, 184, 2528-2538.	0.8	68
100	Extreme CD8 T Cell Requirements for Anti-Malarial Liver-Stage Immunity following Immunization with Radiation Attenuated Sporozoites. PLoS Pathogens, 2010, 6, e1000998.	4.7	175
101	A Default Pathway of Memory CD8 T Cell Differentiation after Dendritic Cell Immunization Is Deflected by Encounter with Inflammatory Cytokines during Antigen-Driven Proliferation. Journal of Immunology, 2009, 183, 2337-2348.	0.8	89
102	Differentiation of Central Memory CD8 T Cells Is Independent of CD62L-Mediated Trafficking to Lymph Nodes. Journal of Immunology, 2009, 182, 6195-6206.	0.8	16
103	Protective and Pathologic Roles of the Immune Response to Mouse Hepatitis Virus Type 1: Implications for Severe Acute Respiratory Syndrome. Journal of Virology, 2009, 83, 9258-9272.	3.4	45
104	Toll-Like Receptor 4 Deficiency Increases Disease and Mortality after Mouse Hepatitis Virus Type 1 Infection of Susceptible C3H Mice. Journal of Virology, 2009, 83, 8946-8956.	3.4	57
105	Interleukin-18-Related Genes Are Induced during the Contraction Phase but Do Not Play Major Roles in Regulating the Dynamics or Function of the T-Cell Response to <i>Listeria monocytogenes</i> Infection. Infection and Immunity, 2009, 77, 1894-1903.	2.2	22
106	Tracking the Total CD8 T Cell Response to Infection Reveals Substantial Discordance in Magnitude and Kinetics between Inbred and Outbred Hosts. Journal of Immunology, 2009, 183, 7672-7681.	0.8	169
107	A "memorable―NK cell discovery. Cell Research, 2009, 19, 277-278.	12.0	2
108	CD8 T cell immunity to Plasmodium permits generation of protective antibodies after repeated sporozoite challenge. Vaccine, 2009, 27, 6103-6106.	3.8	21

#	Article	IF	CITATIONS
109	High initial frequency of TCR-transgenic CD8 T cells alters inflammation and pathogen clearance without affecting memory T cell function. Molecular Immunology, 2009, 47, 71-78.	2.2	11
110	Initial TCR transgenic precursor frequency alters functional behaviour of CD8 T cells responding to acute infection. Advances in Experimental Medicine and Biology, 2009, 633, 71-80.	1.6	4
111	Singleâ€dose immunogenicity and protective efficacy of simian adenoviral vectors against <i>Plasmodium berghei</i> . European Journal of Immunology, 2008, 38, 732-741.	2.9	95
112	Shaping and reshaping CD8+ T-cell memory. Nature Reviews Immunology, 2008, 8, 107-119.	22.7	493
113	Generation and maintenance of Listeria-specific CD8+ T cell responses in perforin-deficient mice chronically infected with LCMV. Virology, 2008, 370, 310-322.	2.4	7
114	Targeting the GA Binding Protein β1L Isoform Does Not Perturb Lymphocyte Development and Function. Molecular and Cellular Biology, 2008, 28, 4300-4309.	2.3	15
115	Memory CD8 T cell responses exceeding a large but definable threshold provide long-term immunity to malaria. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14017-14022.	7.1	236
116	Constitutive Expression of IL-7 Receptor α Does Not Support Increased Expansion or Prevent Contraction of Antigen-Specific CD4 or CD8 T Cells following Listeria monocytogenes Infection. Journal of Immunology, 2008, 180, 2855-2862.	0.8	53
117	Adaptable TCR Avidity Thresholds for Negative Selection. Journal of Immunology, 2008, 181, 6770-6778.	0.8	8
118	Platelet-derived CD154 enables T-cell priming and protection against Listeria monocytogenes challenge. Blood, 2008, 111, 3684-3691.	1.4	83
119	Multigenic mechanisms ensure T cell contraction and prevent mortality during persistent infections. FASEB Journal, 2008, 22, 858.2.	0.5	0
120	Manipulating the Rate of Memory CD8+ T Cell Generation after Acute Infection. Journal of Immunology, 2007, 179, 53-63.	0.8	98
121	A Role for IFN-Î ³ from Antigen-Specific CD8+ T Cells in Protective Immunity to <i>Listeria monocytogenes</i> . Journal of Immunology, 2007, 179, 2457-2466.	0.8	32
122	TCRβ Chain That Forms Peptide-Independent Alloreactive TCR Transfers Reduced Reactivity with Irrelevant Peptide/MHC Complex. Journal of Immunology, 2007, 178, 6109-6114.	0.8	5
123	Initial T Cell Receptor Transgenic Cell Precursor Frequency Dictates Critical Aspects of the CD8+ T Cell Response to Infection. Immunity, 2007, 26, 827-841.	14.3	363
124	Viral vector vaccines make memory T cells against malaria. Immunology, 2007, 121, 158-165.	4.4	30
125	CD8 T cell memory development: CD4 T cell help is appreciated. Immunologic Research, 2007, 39, 94-104.	2.9	59

Adaptive Immunity to Listeria monocytogenes. , 2007, , 225-249.

ARTICLE IF CITATIONS Inflaming the CD8+ T Cell Response. Immunity, 2006, 25, 19-29. 14.3 224 Listeria monocytogenes Infection and the CD8+ T-Cell Hierarchy., 2006, , 147-162. 128 1 Programming, demarcating, and manipulating CD8 + Tâ€cell memory. Immunological Reviews, 2006, 211, 129 6.0 67-80. Simultaneous assessment of antigen-stimulated cytokine production and memory subset composition 130 1.4 24 of memory CD8 T cells. Journal of Immunological Methods, 2006, 313, 161-168. Secondary memory CD8+ T cells are more protective but slower to acquire a central–memory 8.5 148 phenotype. Journal of Experimental Medicine, 2006, 203, 919-932. The Onset of CD8+-T-Cell Contraction Is Influenced by the Peak of Listeria monocytogenes Infection 132 2.2 44 and Antigen Display. Infection and Immunity, 2006, 74, 1528-1536. Listeriolysin O-DeficientListeria monocytogenesas a Vaccine Delivery Vehicle: Antigen-Specific CD8 T Cell Priming and Protective Immunity. Journal of Immunology, 2006, 177, 4012-4020. TRAIL Deficiency Delays, but Does Not Prevent, Erosion in the Quality of "Helpless―Memory CD8 T 134 0.8 56 Cells. Journal of Immunology, 2006, 177, 999-1006. Aberrant Contraction of Antigen-Specific CD4 T Cells after Infection in the Absence of Gamma 2.2 34 Interferon or Its Receptor. Infection and Immunity, 2006, 74, 6252-6263. The generation and modulation of antigen-specific memory CD8 T cell responses. Journal of Leukocyte 136 3.3 13 Biology, 2006, 80, 16-23. T Cell Conditioning Explains Early Disappearance of the Memory CD8 T Cell Response to Infection. 0.8 Journal of Immunology, 2006, 177, 3012-3018. Accelerated CD8+ T-cell memory and prime-boost response after dendritic-cell vaccination. Nature 138 30.7 362 Medicine, 2005, 11, 748-756. Dynamic Regulation of IFN-Î³ Signaling in Antigen-Specific CD8+ T Cells Responding to Infection. Journal 0.8 of Immunology, 2005, 174, 6791-6802. Cutting Edge: Differential Self-Peptide/MHC Requirement for Maintaining CD8 T Cell Function versus 140 0.8 16 Homeostatic Proliferation. Journal of Immunology, 2005, 175, 4829-4833. In Vivo Generation of Pathogen-Specific Th1 Cells in the Absence of the IFN- \hat{I}^3 Receptor. Journal of 141 24 Immunology, 2005, 175, 3117-3122. T Cells Undergo Rapid ON/OFF but Not ON/OFF/ON Cycling of Cytokine Production in Response to 142 0.8 29 Antigen. Journal of Immunology, 2005, 174, 718-726. Duration of Infection and Antigen Display Have Minimal Influence on the Kinetics of the CD4+ T Cell 0.8 Response to <i>Listeria monocytogenes</i> Infection. Journal of Immunology, 2004, 173, 5679-5687. Neutrophil Involvement in Cross-Priming CD8+ T Cell Responses to Bacterial Antigens. Journal of 144 0.8 127

JOHN T HARTY

9

Immunology, 2004, 173, 1994-2002.

#	Article	IF	CITATIONS
145	MHC class la–restricted memory T cells inhibit expansion of a nonprotective MHC class lb (H2-M3)–restricted memory response. Nature Immunology, 2004, 5, 159-168.	14.5	36
146	CD8+ T cell contraction is controlled by early inflammation. Nature Immunology, 2004, 5, 809-817.	14.5	290
147	Memory lanes. Nature Immunology, 2003, 4, 212-213.	14.5	18
148	Viral Infection Results in Massive CD8+ T Cell Expansion and Mortality in Vaccinated Perforin-Deficient Mice. Immunity, 2003, 18, 463-474.	14.3	104
149	Regulation of CD8+ T Cells Undergoing Primary and Secondary Responses to Infection in the Same Host. Journal of Immunology, 2003, 170, 4933-4942.	0.8	102
150	Deficient Anti-Listerial Immunity in the Absence of Perforin Can Be Restored by Increasing Memory CD8+ T Cell Numbers. Journal of Immunology, 2003, 171, 4254-4262.	0.8	22
151	CD8+-T-Cell Response to Secreted and Nonsecreted Antigens Delivered by Recombinant Listeria monocytogenes during Secondary Infection. Infection and Immunity, 2002, 70, 153-162.	2.2	42
152	Quantitation of CD8+ T Cell Expansion, Memory, and Protective Immunity After Immunization with Peptide-Coated Dendritic Cells. Journal of Immunology, 2002, 169, 4936-4944.	0.8	51
153	Influence of effector molecules on the CD8+ T cell response to infection. Current Opinion in Immunology, 2002, 14, 360-365.	5.5	100
154	CD8+ T-cell homeostasis after infection: setting the â€~curve'. Microbes and Infection, 2002, 4, 441-447.	1.9	46
155	Programmed contraction of CD8+ T cells after infection. Nature Immunology, 2002, 3, 619-626.	14.5	511
156	Detection and Analysis of Antigen-Specific CD8 ⁺ T Cells. Immunologic Research, 2001, 24, 325-332.	2.9	6
157	Identification of Listeria monocytogenes In Vivo-Induced Genes by Fluorescence-Activated Cell Sorting. Infection and Immunity, 2001, 69, 5016-5024.	2.2	27
158	<i>Listeria monocytogenes</i> Infection Overcomes the Requirement for CD40 Ligand in Exogenous Antigen Presentation to CD8+ T Cells. Journal of Immunology, 2001, 167, 5603-5609.	0.8	45
159	Intracellular staining for TNF and IFN-γ detects different frequencies of antigen-specific CD8+ T cells. Journal of Immunological Methods, 2000, 238, 107-117.	1.4	92
160	Transient expression of bacterial gene fragments in eukaryotic cells: implications for CD8+ T cell epitope analysis. Journal of Immunological Methods, 2000, 234, 137-147.	1.4	2
161	CD8 + T-Cell Priming against a Nonsecreted Listeria monocytogenes Antigen Is Independent of the Antimicrobial Activities of Gamma Interferon. Infection and Immunity, 2000, 68, 2196-2204.	2.2	16
162	Cutting Edge: Antilisterial Activity of CD8+ T Cells Derived from TNF-Deficient and TNF/Perforin Double-Deficient Mice. Journal of Immunology, 2000, 165, 5-9.	0.8	45

#	Article	IF	CITATIONS
163	Adaptive Immunity and Enhanced CD8+ T Cell Response to <i>Listeria monocytogenes</i> in the Absence of Perforin and IFN-Î ³ . Journal of Immunology, 2000, 164, 6444-6452.	0.8	81
164	Adaptive Immunity against Listeria monocytogenes in the Absence of Type I Tumor Necrosis Factor Receptor p55. Infection and Immunity, 2000, 68, 4470-4476.	2.2	24
165	In vitro and in vivo macrophage function can occur independently of SLP-76. International Immunology, 2000, 12, 887-897.	4.0	14
166	Cutting Edge: OFF Cycling of TNF Production by Antigen-Specific CD8+ T Cells Is Antigen Independent. Journal of Immunology, 2000, 165, 5387-5391.	0.8	40
167	Impaired Assembly yet Normal Trafficking of MHC Class I Molecules in Tapasin Mutant Mice. Immunity, 2000, 13, 213-222.	14.3	208
168	CD8+ T Cell Effector Mechanisms in Resistance to Infection. Annual Review of Immunology, 2000, 18, 275-308.	21.8	608
169	Regulation of Antigen-Specific CD8 ⁺ T Cell Homeostasis by Perforin and Interferon-Î ³ . Science, 2000, 290, 1354-1357.	12.6	430
170	Responses of CD8+ T cells to intracellular bacteria. Current Opinion in Immunology, 1999, 11, 89-93.	5.5	89
171	A Knockout Approach to Understanding CD8+ Cell Effector Mechanisms in Adaptive Immunity to Listeria Monocytogenes. Immunobiology, 1999, 201, 196-204.	1.9	16
172	Compartmentalization of Bacterial Antigens: Differential Effects on Priming of CD8 T Cells and Protective Immunity. Cell, 1998, 92, 535-545.	28.9	215
173	Interactions of the Invasive Pathogens <i>Salmonella typhimurium</i> , <i>Listeria monocytogenes</i> , and <i>Shigella flexneri</i> with M Cells and Murine Peyer's Patches. Infection and Immunity, 1998, 66, 3758-3766.	2.2	171
174	CD8+ T cells in intracellular bacterial infections of mice. Research in Immunology, 1996, 147, 519-524.	0.9	13
175	Primary and secondary immune responses to Listeria monocytogenes. Current Opinion in Immunology, 1996, 8, 526-530.	5.5	86
176	CD8 T-cell recognition of macrophages and hepatocytes results in immunity to Listeria monocytogenes. Infection and Immunity, 1996, 64, 3632-3640.	2.2	48
177	C58 and AKR mice of all ages develop motor neuron disease after lactate dehydrogenase-elevating virus infection but only if antiviral immune responses are blocked by chemical or genetic means or as a result of old age. Journal of NeuroVirology, 1995, 1, 244-252.	2.1	24
178	Specific immunity to listeria monocytogenes in the absence of IFNÎ ³ . Immunity, 1995, 3, 109-117.	14.3	411
179	CD8 T cells can protect against an intracellular bacterium in an interferon gamma-independent fashion Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 11612-11616.	7.1	128
180	Mode of neutralization of lactate dehydrogenase-elevating virus by polyclonal and monoclonal ant monoclonal antibodies. Archives of Virology, 1992, 123, 89-100.	2.1	17

JOHN T HARTY

#	Article	IF	CITATIONS
181	Pathogenesis of Age-Dependent Poliomyelitis of Mice. , 1992, , 377-415.		3
182	Isolation of replication-competent molecular clones of visna virus. Virology, 1991, 181, 228-240.	2.4	65
183	Precise prediction of a dominant class I MHC-restricted epitope of Listeria monocytogenes. Nature, 1991, 353, 852-855.	27.8	453
184	Polyclonal B Cell Activation of IgG2a and IgG2b Production by Infection of Mice with Lactate Dehydrogenase-Elevating Virus Is Partly Dependent on CD4+Lymphocytes. Viral Immunology, 1990, 3, 273-288.	1.3	34
185	Persistent infection of mice by lactate dehydrogenase-elevating virus: transient virus replication in macrophages of the spleen. Virus Research, 1989, 14, 317-326.	2.2	12
186	Extensive cytocidal replication of lactate dehydrogenase-elevating virus in cultured peritoneal macrophages from 1–2-week-old mice. Virus Research, 1989, 14, 327-338.	2.2	40
187	Persistent infection of mice by lactate dehydrogenase-elevating virus: effects of immunosuppression on virus replication and antiviral immune responses. Virus Research, 1989, 14, 297-315.	2.2	39
188	Dual virus etiology of age-dependent poliomyelitis of mice. A potential model for human motor neuron diseases. Microbial Pathogenesis, 1989, 6, 391-401.	2.9	26
189	Protection of C58 mice from lactate dehydrogenase-elevating virus-induced motor neuron disease by non-neutralizing antiviral antibodies without interference with virus replication. Journal of Neuroimmunology, 1987, 15, 195-206.	2.3	23
190	Characteristics of Monoclonal Antibodies to the Lactate Dehydrogenase-Elevating Virus. Intervirology, 1987, 27, 53-60.	2.8	22
191	Antibody response of mice to lactate dehydrogenase-elevating virus during infection and immunization with inactivated virus. Virus Research, 1986, 5, 357-375.	2.2	79
192	EVIDENCE THAT SECONDARY MIXED LEUKOCYTE CULTURE SUPERNATANT MEDIATES CHANGES IN CELLULAR RECRUITMENT, BLOOD FLOW, AND VASCULAR PERMEABILITY. Transplantation, 1986, 42, 621-626.	1.0	6
193	Modulation of Hepatocyte Protein Synthesis by Endotoxin-activated Kupffer Cells III. Evidence for the Role of a Monokine Similar to but not Identical with Interleukin-1. Annals of Surgery, 1985, 201, 436-443.	4.2	34
194	Listeria monocytogenes Infection of Mice: an Elegant Probe To Dissect Innate and T-Cell Immune Responses. , 0, , 609-619.		0