
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1084476/publications.pdf Version: 2024-02-01

KADEN KEESHAN

#	Article	IF	CITATIONS
1	Metalloproteinase inhibition reduces AML growth, prevents stem cell loss, and improves chemotherapy effectiveness. Blood Advances, 2022, 6, 3126-3141.	5.2	12
2	Detecting endogenous TRIB2 protein expression by flow cytometry and Western blotting. Methods in Enzymology, 2022, 667, 59-77.	1.0	0
3	Pharmacological impact of FLT3 mutations on receptor activity and responsiveness to tyrosine kinase inhibitors. Biochemical Pharmacology, 2021, 183, 114348.	4.4	8
4	Insights into the molecular profiles of adult and paediatric acute myeloid leukaemia. Molecular Oncology, 2021, 15, 2253-2272.	4.6	10
5	Structure vs. Function of TRIB1—Myeloid Neoplasms and Beyond. Cancers, 2021, 13, 3060.	3.7	7
6	BRD4-mediated repression of p53 is a target for combination therapy in AML. Nature Communications, 2021, 12, 241.	12.8	43
7	Superenhancing AML with Trib1. Blood, 2021, 137, 8-9.	1.4	0
8	Pseudokinases: a tribbleâ€edged sword. FEBS Journal, 2020, 287, 4170-4182.	4.7	34
9	CRISPR Gene Editing of Murine Blood Stem and Progenitor Cells Induces MLL-AF9 Chromosomal Translocation and MLL-AF9 Leukaemogenesis. International Journal of Molecular Sciences, 2020, 21, 4266.	4.1	8
10	The deubiquitinase USP7 uses a distinct ubiquitin-like domain to deubiquitinate NF-Äß subunits. Journal of Biological Chemistry, 2020, 295, 11754-11763.	3.4	18
11	Abstract 3426: A synthetic lethality approach to eradicate AML via synergistic activation of pro-apoptotic p53 by MDM2 and BET inhibitors. , 2020, , .		0
12	A Synthetic Lethal Approach to Eradicate AML Via Synergistic Activation of Pro-Apoptotic p53 By MDM2 and BET Inhibitors. Blood, 2020, 136, 14-14.	1.4	0
13	The regulation of sequence specific NF-κB DNA binding and transcription by IKKβ phosphorylation of NF-κB p50 at serine 80. Nucleic Acids Research, 2019, 47, 11151-11163.	14.5	16
14	Highlights of the 2nd International Symposium on Tribbles and Diseases: tribbles tremble in therapeutics for immunity, metabolism, fundamental cell biology and cancer. Acta Pharmaceutica Sinica B, 2019, 9, 443-454.	12.0	3
15	The lήB-protein BCL-3 controls Toll-like receptor-induced MAPK activity by promoting TPL-2 degradation in the nucleus. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25828-25838.	7.1	10
16	Targeting the arginine metabolic brake enhances immunotherapy for leukaemia. International Journal of Cancer, 2019, 145, 2201-2208.	5.1	58
17	Harnessing the potential of epigenetic therapies for childhood acute myeloid leukemia. Experimental Hematology, 2018, 63, 1-11.	0.4	12
18	Age-specific biological and molecular profiling distinguishes paediatric from adult acute myeloid leukaemias. Nature Communications, 2018, 9, 5280.	12.8	46

#	Article	IF	CITATIONS
19	Covalent inhibitors of EGFR family protein kinases induce degradation of human Tribbles 2 (TRIB2) pseudokinase in cancer cells. Science Signaling, 2018, 11, .	3.6	66
20	Inverse and correlative relationships between TRIBBLES genes indicate non-redundant functions during normal and malignant hemopoiesis. Experimental Hematology, 2018, 66, 63-78.e13.	0.4	26
21	A Trib2-p38 axis controls myeloid leukaemia cell cycle and stress response signalling. Cell Death and Disease, 2018, 9, 443.	6.3	24
22	Trib2 expression in granulocyte-monocyte progenitors drives a highly drug resistant acute myeloid leukaemia linked to elevated Bcl2. Oncotarget, 2018, 9, 14977-14992.	1.8	15
23	BET Inhibitors Potentiate Activation of p53 and Killing of AML By MDM2 Inhibitors $\hat{a} \in$ " a Candidate Combination Therapy. Blood, 2018, 132, 3912-3912.	1.4	2
24	The Tribble with APL: A New Road to Therapy. Cancer Cell, 2017, 31, 612-613.	16.8	8
25	Tribbles in the 21st Century: The Evolving Roles of Tribbles Pseudokinases in Biology and Disease. Trends in Cell Biology, 2017, 27, 284-298.	7.9	192
26	Regulation of NF-κB by PML and PML-RARα. Scientific Reports, 2017, 7, 44539.	3.3	18
27	Unlocking the potential of anti-CD33 therapy in adult and childhood acute myeloid leukemia. Experimental Hematology, 2017, 54, 40-50.	0.4	28
28	Human TRIB2 Oscillates during the Cell Cycle and Promotes Ubiquitination and Degradation of CDC25C. International Journal of Molecular Sciences, 2016, 17, 1378.	4.1	19
29	Co-operative leukemogenesis in acute myeloid leukemia and acute promyelocytic leukemia reveals C/EBPÂ as a common target of TRIB1 and PML/RARA. Haematologica, 2016, 101, 1228-1236.	3.5	20
30	TRIB2 regulates normal and stress-induced thymocyte proliferation. Cell Discovery, 2016, 2, 15050.	6.7	25
31	The presence of C/EBPα and its degradation are both required for TRIB2-mediated leukaemia. Oncogene, 2016, 35, 5272-5281.	5.9	25
32	The Bone Marrow Niche Distinguishes Young and Old Leukemia. Blood, 2016, 128, 1548-1548.	1.4	0
33	TRIB2 and the ubiquitin proteasome system in cancer. Biochemical Society Transactions, 2015, 43, 1089-1094.	3.4	19
34	Investigation of the role of TRIB2 in normal murine hematopoiesis. Experimental Hematology, 2015, 43, S77.	0.4	1
35	Nfix Expression Critically Modulates Early B Lymphopoiesis and Myelopoiesis. PLoS ONE, 2015, 10, e0120102.	2.5	19
36	Insights into cell ontogeny, age, and acute myeloid leukemia. Experimental Hematology, 2015, 43, 745-755.	0.4	28

#	Article	IF	CITATIONS
37	An investigation of the leukaemia initiating cell in TRIB2 mediated AML. Experimental Hematology, 2015, 43, S88.	0.4	Ο
38	Knockdown of interleukin-1 receptor 1 is not neuroprotective in the 6-hydroxydopamine striatal lesion rat model of Parkinson's disease. International Journal of Neuroscience, 2015, 125, 70-77.	1.6	6
39	Dual Inhibition of MDM2 and BET Cooperate to Eradicate Acute Myeloid Leukemia. Blood, 2015, 126, 674-674.	1.4	1
40	NFIX influences stem and progenitor lineage fate. Experimental Hematology, 2014, 42, S54.	0.4	0
41	Targeting C/EBPalpha p42 and oncogene cooperativity in acute myeloid leukaemia. Experimental Hematology, 2014, 42, S42.	0.4	Ο
42	Regulation of Trib2 by an E2F1-C/EBPα feedback loop in AML cell proliferation. Blood, 2014, 123, 2389-2400.	1.4	44
43	The functionally diverse roles of tribbles. Biochemical Society Transactions, 2013, 41, 1096-1100.	3.4	57
44	E2F1 positively regulates Trib2 pseudokinase expression and proliferation in acute leukaemia. Experimental Hematology, 2013, 41, S50.	0.4	0
45	NFIX expression critically modulates early B lymphopoiesis and myelopoiesis. Experimental Hematology, 2013, 41, S68.	0.4	Ο
46	Negative regulation of TLX by IL-1Î ² correlates with an inhibition of adult hippocampal neural precursor cell proliferation. Brain, Behavior, and Immunity, 2013, 33, 7-13.	4.1	61
47	Tribbles in acute leukemia. Blood, 2013, 121, 4265-4270.	1.4	47
48	Elucidation and Therapeutic Targeting Of The Molecular Mechanism Of TRIB2-Mediated Acute Myeloid Leukaemia. Blood, 2013, 122, 3799-3799.	1.4	0
49	Elevated <i><scp>TRIB</scp>2</i> with <i><scp>NOTCH</scp>1</i> activation in paediatric/adult <scp>T</scp> â€ <scp>ALL</scp> . British Journal of Haematology, 2012, 158, 626-634.	2.5	31
50	Differential ability of Tribbles family members to promote degradation of C/EBPα and induce acute myelogenous leukemia. Blood, 2010, 116, 1321-1328.	1.4	148
51	Transformation by Tribbles homolog 2 (Trib2) requires both the Trib2 kinase domain and COP1 binding. Blood, 2010, 116, 4948-4957.	1.4	103
52	Tribbles homolog 2 (Trib2) and HoxA9 cooperate to accelerate acute myelogenous leukemia. Blood Cells, Molecules, and Diseases, 2008, 40, 119-121.	1.4	41
53	Trib1 and Trib2 but Not Trib3 Degrade C/EBPa̕and Induce Acute Myelogenous Leukemia. Blood, 2008, 112, 2950-2950.	1.4	0
54	Distinct gene expression profiles of acute myeloid/T-lymphoid leukemia with silenced CEBPA and mutations in NOTCH1. Blood, 2007, 110, 3706-3714.	1.4	180

#	ARTICLE	IF	CITATIONS
55	Leukemogenesis induced by wild-type and STI571-resistant BCR/ABL is potently suppressed by C/EBPα. Blood, 2006, 108, 1353-1362.	1.4	34
56	Tribbles homolog 2 inactivates C/EBPα and causes acute myelogenous leukemia. Cancer Cell, 2006, 10, 401-411.	16.8	232
57	The tumor suppressor menin regulates hematopoiesis and myeloid transformation by influencing Hox gene expression. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1018-1023.	7.1	142
58	The requirement for Notch signaling at the β-selection checkpoint in vivo is absolute and independent of the pre–T cell receptor. Journal of Experimental Medicine, 2006, 203, 2239-2245.	8.5	184
59	Tribbles Homolog 2 (Trib2) Inactivates C/EBPalpha and Causes Acute Myelogenous Leukemia Blood, 2006, 108, 776-776.	1.4	4
60	Bcr-Abl upregulates cytosolic p21WAF-1/CIP-1 by a phosphoinositide-3-kinase (PI3K)-independent pathway. British Journal of Haematology, 2003, 123, 34-44.	2.5	35
61	Transcription activation function of C/EBPα is required for induction of granulocytic differentiation. Blood, 2003, 102, 1267-1275.	1.4	87
62	High Bcr-Abl expression prevents the translocation of Bax and Bad to the mitochondrion. Leukemia, 2002, 16, 1725-1734.	7.2	27
63	Elevated Bcr-Abl expression levels are sufficient for a haematopoietic cell line to acquire a drug-resistant phenotype. Leukemia, 2001, 15, 1823-1833.	7.2	68
64	Molecular Abnormalities in Chronic Myeloid Leukemia: Deregulation of Cell Growth and Apoptosis. Oncologist, 2000, 5, 405-415.	3.7	62