Roger Labia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10839509/publications.pdf

Version: 2024-02-01

70	2.501	236925	206112
78	2,581	25	48
papers	citations	h-index	g-index
07	0.7	0.7	1051
97	97	97	1851
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Î ² -Lactamases of Kluyvera ascorbata , Probable Progenitors of Some Plasmid-Encoded CTX-M Types. Antimicrobial Agents and Chemotherapy, 2002, 46, 3045-3049.	3.2	292
2	Molecular and Biochemical Characterization of VEB-1, a Novel Class A Extended-Spectrum β-Lactamase Encoded by an <i>Escherichia coli</i> Integron Gene. Antimicrobial Agents and Chemotherapy, 1999, 43, 573-581.	3.2	221
3	Close amino acid sequence relationship between the new plasmid-mediated extended-spectrum \hat{l}^2 -lactamase MEN-1 and chromosomally encoded enzymes of Klebsiella oxytoca. BBA - Proteins and Proteomics, 1992, 1122, 15-22.	2.1	142
4	Computerized microacidimetric determination of \hat{l}^2 lactamase Michaelis-Menten constants. FEBS Letters, 1973, 33, 42-44.	2.8	135
5	Single amino acid substitution between SHV-1 β-lactamase and cefotaxime-hydrolyzing SHV-2 enzyme. FEBS Letters, 1988, 231, 217-220.	2.8	99
6	A Structure-Based Classification of Class A \hat{I}^2 -Lactamases, a Broadly Diverse Family of Enzymes. Clinical Microbiology Reviews, 2016, 29, 29-57.	13.6	97
7	Extension of resistance to cefepime and cefpirome associated to a six amino acid deletion in the H-10 helix of the cephalosporinase of anEnterobacter cloacaeclinical isolate. FEMS Microbiology Letters, 2001, 195, 185-190.	1.8	80
8	X-ray Analysis of the NMC-A \hat{l}^2 -Lactamase at 1.64- \hat{A} Resolution, a Class A Carbapenemase with Broad Substrate Specificity. Journal of Biological Chemistry, 1998, 273, 26714-26721.	3.4	79
9	Synthesis and antimicrobial activities of N-substituted imides. Il Farmaco, 2002, 57, 421-426.	0.9	73
10	New syntheses andÂpotential antimalarial activities ofÂnew â€retinoid-like chalcones'. European Journal of Medicinal Chemistry, 2006, 41, 142-146.	5 . 5	67
11	Discriminatory Detection of Inhibitor-Resistant β-Lactamases in <i>Escherichia coli</i> by Single-Strand Conformation Polymorphism-PCR. Antimicrobial Agents and Chemotherapy, 1998, 42, 879-884.	3.2	63
12	Beta-Lactamases: Determination of Their Isoelectric Points. Antimicrobial Agents and Chemotherapy, 1978, 13, 695-698.	3.2	62
13	Chromosomally encoded cephalosporin-hydrolyzing \hat{l}^2 -lactamase of Proteus vulgaris RO104 belongs to Ambler's class A. BBA - Proteins and Proteomics, 1994, 1207, 31-39.	2.1	50
14	Sulbactam: Biochemical Factors Involved in Its Synergy with Ampicillin. Clinical Infectious Diseases, 1986, 8, S496-S502.	5 . 8	45
15	Inhibition kinetics of three R-factor-mediated \hat{l}^2 -lactamases by a new \hat{l}^2 -lactam sulfone (CP 45899). Biochimica Et Biophysica Acta - Biomembranes, 1980, 611, 351-357.	2.6	44
16	Characterization and amino acid sequence of IRT-4, a novel TEM-type enzyme with a decreased susceptibility to $\tilde{A}\check{Z}\hat{A}^2$ -lactamase inhibitors. FEMS Microbiology Letters, 1994, 120, 111-117.	1.8	44
17	Molecular Characterization of Chromosomal Class C \hat{l}^2 -Lactamase and Its Regulatory Gene in Ochrobactrum anthropi. Antimicrobial Agents and Chemotherapy, 2001, 45, 2324-2330.	3.2	44
18	Site-directed mutagenesis on TEM-1 $\tilde{\text{AY}}$ -lactamase: role of Glul66 in catalysis and substrate binding. Protein Engineering, Design and Selection, 1991, 4, 805-810.	2.1	43

#	Article	IF	CITATIONS
19	Characterization and amino acid sequence analysis of a new oxyimino cephalosporin-hydrolyzing class A β-lactamase from Serratia fonticola CUV. BBA - Proteins and Proteomics, 1997, 1341, 58-70.	2.1	40
20	Clinical inhibitor-resistant mutants of the \hat{l}^2 -lactamase TEM-1 at amino-acid position 69. BBA - Proteins and Proteomics, 1998, 1382, 38-46.	2.1	39
21	Sequence analysis and biochemical characterisation of chromosomal CAV-1 (Aeromonas caviae), the parental cephalosporinase of plasmid-mediated AmpC ‰FOX' cluster. FEMS Microbiology Letters, 2 222, 93-98.	.0033	37
22	A kinetic study of NMC-A $\tilde{A}\tilde{Z}\hat{A}^2$ -lactamase, an Ambler class A carbapenemase also hydrolyzing cephamycins. FEMS Microbiology Letters, 1996, 143, 29-33.	1.8	32
23	Cefotaxime-hydrolysing activity of the $\tilde{A}\check{Z}\hat{A}^2$ -lactamase of Klebsiella oxytoca D488 could be related to a threonine residue at position 140. FEMS Microbiology Letters, 1991, 81, 185-192.	1.8	28
24	Klebsiella pneumonia strains moderately resistant to ampicillin and carbenicillin: characterization of a new \hat{l}^2 -lactamase. Journal of Antimicrobial Chemotherapy, 1979, 5, 375-382.	3.0	27
25	Affinity of Cefmenoxime for Beta-Lactamases: An Analysis. American Journal of Medicine, 1984, 77, 25-27.	1.5	26
26	Site-directed mutagenesis of beta-lactamase TEM-1. Investigating the potential role of specific residues on the activity of Pseudomonas-specific enzymes. FEBS Journal, 1993, 217, 939-946.	0.2	26
27	Biochemical-Genetic Analysis and Distribution of FAR-1, a Class A Î ² -Lactamase from <i>Nocardia farcinica</i> . Antimicrobial Agents and Chemotherapy, 1999, 43, 1644-1650.	3.2	25
28	TEM-89 \hat{I}^2 -Lactamase Produced by a Proteus mirabilis Clinical Isolate: New Complex Mutant (CMT 3) with Mutations in both TEM-59 (IRT-17) and TEM-3. Antimicrobial Agents and Chemotherapy, 2001, 45, 3591-3594.	3.2	25
29	Evidence of In Vivo Transfer of a Plasmid Encoding the Extended-Spectrum \hat{I}^2 -Lactamase TEM-24 and Other Resistance Factors among Different Members of the Family Enterobacteriaceae. Journal of Clinical Microbiology, 2001, 39, 1985-1988.	3.9	23
30	New aromatic annulation reaction via a C14 enaminone synthon: synthesis of †terpenoid-like chalcones'. Tetrahedron Letters, 2005, 46, 6671-6674.	1.4	23
31	Antifouling Activities of N-Substituted Imides: Antimicrobial Activities and Inhibition of Mytilus edulis Phenoloxidase. Marine Biotechnology, 2002, 4, 431-440.	2.4	22
32	Classification of ??-Lactamases from Branhamella catarrhalis in Relation to Penicillinases Produced by Other Bacterial Species. Drugs, 1986, 31, 40-47.	10.9	21
33	Resistance to ceftazidime is associated with a S220Y substitution in the omega loop of the AmpC \hat{l}^2 -lactamase of a Serratia marcescens clinical isolate. Journal of Antimicrobial Chemotherapy, 2005, 55, 496-499.	3.0	21
34	Molecular and Biochemical Characterization of a Novel Class A \hat{I}^2 -Lactamase (HER-1) from Escherichia hermannii. Antimicrobial Agents and Chemotherapy, 2003, 47, 2669-2673.	3.2	20
35	Structure-based classification of class A beta-lactamases, an update. Current Research in Translational Medicine, 2019, 67, 115-122.	1.8	20
36	Molecular and Biochemical Analysis of AST-1, a Class A \hat{l}^2 -Lactamase from Nocardia asteroides Sensu Stricto. Antimicrobial Agents and Chemotherapy, 2001, 45, 878-882.	3.2	17

#	Article	IF	CITATIONS
37	Postneurosurgical Meningitis Due to Proteus penneri with Selection of a Ceftriaxone-Resistant Isolate: Analysis of Chromosomal Class A \hat{l}^2 -Lactamase HugA and its LysR-Type Regulatory Protein HugR. Antimicrobial Agents and Chemotherapy, 2002, 46, 216-219.	3.2	17
38	Novel Plasmid-Encoded Class C \hat{l}^2 -Lactamase (MOX-2) in Klebsiella pneumoniae from Greece. Antimicrobial Agents and Chemotherapy, 2002, 46, 2262-2265.	3.2	17
39	TEM-80, a Novel Inhibitor-Resistant \hat{l}^2 -Lactamase in a Clinical Isolate of Enterobacter cloacae. Antimicrobial Agents and Chemotherapy, 2002, 46, 1183-1189.	3.2	17
40	Chemistry of Natural Retinoids and Carotenoids: Challenges for the Future. Current Organic Synthesis, 2004, 1, 167-209.	1.3	17
41	Beta-Lactamases Produced by a Pseudomonas aeruginosa Strain Highly Resistant to Carbenicillin. Antimicrobial Agents and Chemotherapy, 1977, 11, 785-790.	3.2	16
42	Phenotypic Study of Resistance of \hat{l}^2 -Lactamase-Inhibitor-Resistant TEM Enzymes Which Differ by Naturally Occurring Variations and by Site-Directed Substitution at Asp $<$ sup $>$ 276 $<$ /sup $>$. Antimicrobial Agents and Chemotherapy, 1998, 42, 1323-1328.	3.2	16
43	New Syntheses of Retinal and Its Acyclic Analog \hat{I}^3 -Retinal by an Extended Aldol Reaction with a C6 Building Block That Incorporates a C5 Unit after Decarboxylation. A Formal Route to Lycopene and \hat{I}^2 -Carotene. Helvetica Chimica Acta, 2007, 90, 512-520.	1.6	16
44	Biochemical-Genetic Analysis and Distribution of DES-1, an Ambler Class A Extended-Spectrum β-Lactamase from Desulfovibrio desulfuricans. Antimicrobial Agents and Chemotherapy, 2002, 46, 3215-3222.	3.2	15
45	Class C β-Lactamases: Molecular Characteristics. Clinical Microbiology Reviews, 2022, 35, e0015021.	13.6	15
46	A New Stereoselective Synthesis of Acitretin (=Soriatane®, Neotigason®). Helvetica Chimica Acta, 2002, 85, 2926-2929.	1.6	14
47	New Synthesis of Natural Carotene Isorenieratene (φ,φ-Carotene) and its 3,3′-Dimethoxy Analogue. Helvetica Chimica Acta, 2003, 86, 3314-3319.	1.6	14
48	Syntheses, in vitro antibacterial and cytotoxic activities of a series of 3-substituted succinimides. Il Farmaco, 2004, 59, 879-886.	0.9	14
49	Survey of Enterobacteriaceae Producing Extended-Spectrum β-Lactamases in a Slovak Hospital: Dominance of SHV-2a and Characterization of TEM-132. Antimicrobial Agents and Chemotherapy, 2005, 49, 3066-3069.	3.2	13
50	Affinity chromatography of \hat{l}^2 -lactamases. Biochimica Et Biophysica Acta - Biomembranes, 1973, 315, 439-442.	2.6	12
51	Characterization of TEM-56, a Novel β-Lactamase Produced by a Klebsiella pneumoniae Clinical Isolate. Antimicrobial Agents and Chemotherapy, 2000, 44, 453-455.	3.2	12
52	BUT-1: a new member in the chromosomal inducible class C β-lactamases family from a clinical isolate ofButtiauxellasp FEMS Microbiology Letters, 2002, 213, 103-111.	1.8	10
53	Atypical Oxidation Reaction by Thionyl Chloride: Easy Twoâ€5tep Synthesis of Nâ€Alkylâ€1,4â€dithiines. Synthetic Communications, 2006, 36, 3591-3597.	2.1	10
54	A New Biomimetic-Like Aromatization of the Cyclic End Groups of Terpenoids with Stereospecific Migration of One of the Methyl Groups: A Convenient Route to Isorenieratene (φ,φ-Carotene). European Journal of Organic Chemistry, 2007, 2007, 711-715.	2.4	10

#	Article	IF	CITATIONS
55	Moxalactam: An Oxa- \hat{l}^2 -Lactam Antibiotic that Inactivates \hat{l}^2 -Lactamases. Clinical Infectious Diseases, 1982, 4, S529-S535.	5. 8	9
56	An additional ionic bond suggested by molecular modelling of TEM-2 might induce a slight discrepancy between catalytic properties of TEM-1 and TEM-2 β-lactamases. FEMS Microbiology Letters, 1996, 143, 121-125.	1.8	9
57	Synthesis of new ethyl 9-methylene-13E and 13Z-retinoates via the Julia olefination reaction. Tetrahedron Letters, 2001, 42, 4795-4797.	1.4	8
58	Syntheses of new 9- and 13-methylene isomers of retinal. Tetrahedron Letters, 2000, 41, 7221-7224.	1.4	6
59	Synthesis of 9-Methylene Analogs of Retinol, Retinal, Retinonitrile and Retinoic Acid. European Journal of Organic Chemistry, 2001, 2001, 1731-1734.	2.4	6
60	A survey of mono- or bis-decarboxylation of \hat{l}^2 -methyl polyethylenic-malonic acids. Tetrahedron Letters, 2003, 44, 4737-4740.	1.4	6
61	Two-Carbons Homologation of Methyl Ketones Examplified for the Synthesis of Citral from 6-Methyl-5-hepten-2-one. Synthetic Communications, 2003, 33, 1195-1201.	2.1	6
62	New Synthetic Analogs of Retinoids: Synthesis of Aromatic Analogs of 9-Methylidene- and 13-Demethyl-9-methylidene-retinol, -retinal, and Ethyl 13-Demethyl-9-methylideneretinoate. Helvetica Chimica Acta, 2001, 84, 3423-3427.	1.6	5
63	Etude de la stabilité chimique et enzymatique de la Métampicilline. Médecine Et Maladies Infectieuses, 1973, 3, 395-398.	5.0	3
64	Val-237 for Ala substitution in the TEM-2 $\tilde{A}\check{Z}\hat{A}^2$ -lactamase dramatically alters the catalytic efficiencies towards carbenicillin and ticarcillin. FEMS Microbiology Letters, 1994, 117, 333-339.	1.8	3
65	Synthesis of new cyclic retinoids via base induced self-condensation of C-13, C-14 and C-15 units. Tetrahedron Letters, 2000, 41, 3359-3362.	1.4	3
66	STEREOSELECTIVE SYNTHESIS OF 9-METHYLENE-13-DEMETHYL ANALOGS OF NATURAL RETINOIDS. Synthetic Communications, 2001, 31, 3219-3223.	2.1	3
67	Recent Progress in Retinoid Chemistry. Studies in Natural Products Chemistry, 2003, 28, 69-107.	1.8	3
68	Structure–activity relationships of methylene or terminal side chain modified retinoids on the differentiation and cell death signaling in NB4 promyelocytic leukemia cells. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 4257-4261.	2.2	3
69	Novel Ï€ _{2s} +Ï€ _{2a} Electrocyclization of Triethylenicâ€Malonic Acids Exemplified for a Oneâ€Pot Synthesis of New γâ€Dilactones <i>cis</i> â€Fused with a Cyclopentene. Journal of Heterocyclic Chemistry, 2016, 53, 1017-1021.	2.6	3
70	Substitution of Met-69 by Ala or Gly in TEM-1 β-lactamase confer an increased susceptibility to clavulanic acid and other inhibitors. FEMS Microbiology Letters, 2002, 211, 13-16.	1.8	2
71	Synthesis of a New C-15 Phosphorus Ylide Used for the Preparation of Some \hat{I}^2 -End-Group Retinoid Derivatives. Synthetic Communications, 2010, 41, 184-190.	2.1	2
72	Base-Induced Decarboxylation of Polyunsaturatedα-Cyano Acids Derived from Malonic Acid: Synthesis of Sesquiterpene Nitriles and Aldehydes withβ-,φ-, andÏ^-End Groups. Helvetica Chimica Acta, 2013, 96, 259-265.	1.6	2

#	Article	IF	CITATIONS
73	Kinetic studies of a \hat{l}^2 -Lactamase by a computerized microacidimetric method. Biochimica Et Biophysica Acta - Biomembranes, 1975, 384, 242-249.	2.6	1
74	Synthesis of New 9â€Methylene Analogs of Retinoids. Synthetic Communications, 2005, 35, 2363-2369.	2.1	1
75	Chemistry of Natural Retinoids and Carotenoids: Challenges for the Future. ChemInform, 2004, 35, no.	0.0	0
76	Syntheses, in vitro Antibacterial and Cytotoxic Activities of a Series of 3-Substituted Succinimides ChemInform, 2005, 36, no.	0.0	0
77	Identification of \hat{I}^2 Lactamases of Pseudomonas Aeruginosa by Computerized Microacidimetry. , 1975, , 51-55.		0
78	Interactions of New Cephalosporins with Some Cephalosporinases., 1976,, 347-353.		0