Pavan Reddy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1083873/publications.pdf

Version: 2024-02-01

156	12,271	56	107
papers	citations	h-index	g-index
161	161	161	11454
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A redox cycle with complex II prioritizes sulfide quinone oxidoreductase-dependent H2S oxidation. Journal of Biological Chemistry, 2022, 298, 101435.	1.6	28
2	LNCing RNA to immunity. Trends in Immunology, 2022, 43, 478-495.	2.9	12
3	Deletion of bone marrow myeloperoxidase attenuates chronic kidney disease accelerated atherosclerosis. Journal of Biological Chemistry, 2021, 296, 100120.	1.6	5
4	ATG5-Dependent Autophagy Uncouples T-cell Proliferative and Effector Functions and Separates Graft-versus-Host Disease from Graft-versus-Leukemia. Cancer Research, 2021, 81, 1063-1075.	0.4	7
5	ER-to-Golgi transport and SEC23-dependent COPII vesicles regulate T cell alloimmunity. Journal of Clinical Investigation, 2021, 131, .	3.9	6
6	National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease: I. The 2020 Etiology and Prevention Working Group Report. Transplantation and Cellular Therapy, 2021, 27, 452-466.	0.6	24
7	RNA-seq of human T cells after hematopoietic stem cell transplantation identifies $\langle i \rangle$ Linc00402 $\langle i \rangle$ as a regulator of T cell alloimmunity. Science Translational Medicine, 2021, 13, .	5.8	6
8	Type 1 interferon to prevent leukemia relapse after allogeneic transplantation. Blood Advances, 2021, 5, 5047-5056.	2.5	10
9	Mitochondrial complex II in intestinal epithelial cells regulates T cell-mediated immunopathology. Nature Immunology, 2021, 22, 1440-1451.	7. O	22
10	The Absence of NLRP6 in Donor T Cells Exacerbates Gvhd. Blood, 2021, 138, 2766-2766.	0.6	О
11	SEC23A rescues SEC23B-deficient congenital dyserythropoietic anemia type II. Science Advances, 2021, 7, eabj5293.	4.7	4
12	The Endoplasmic Reticulum Cargo Receptor SURF4 Facilitates Efficient Erythropoietin Secretion. Molecular and Cellular Biology, 2020, 40, .	1.1	23
13	Short chain fatty acids: Postbiotics/metabolites and graft versus host disease colitis. Seminars in Hematology, 2020, 57, 1-6.	1.8	24
14	Targeting Signal 3 Extracellularly and Intracellularly in Graft-Versus-Host Disease. Frontiers in Immunology, 2020, 11, 722.	2.2	6
15	Prevention and Treatment of Acute Graft-versus-Host Disease in Children, Adolescents, and Young Adults. Biology of Blood and Marrow Transplantation, 2020, 26, e101-e112.	2.0	30
16	MicroRNA-142 Is Critical for the Homeostasis and Function of Type 1 Innate Lymphoid Cells. Immunity, 2019, 51, 479-490.e6.	6.6	39
17	SNARE protein SEC22B regulates early embryonic development. Scientific Reports, 2019, 9, 11434.	1.6	7
18	Intracellular Sensors and Cellular Metabolism in Allogeneic Hematopoietic Stem Cell Transplantation., 2019,, 349-374.		0

#	Article	IF	CITATIONS
19	Host NLRP6 exacerbates graft-versus-host disease independent of gut microbial composition. Nature Microbiology, 2019, 4, 800-812.	5.9	36
20	A Phase 2 Study of Pembrolizumab during Lymphodepletion after Autologous Hematopoietic Cell Transplantation for Multiple Myeloma. Biology of Blood and Marrow Transplantation, 2019, 25, 1492-1497.	2.0	23
21	A Pipeline for Faecal Host DNA Analysis by Absolute Quantification of LINE-1 and Mitochondrial Genomic Elements Using ddPCR. Scientific Reports, 2019, 9, 5599.	1.6	9
22	Assessment of Individual versus Composite Endpoints of Acute Graft-versus-Host Disease in Determining Long-Term Survival after Allogeneic Transplantation. Biology of Blood and Marrow Transplantation, 2019, 25, 1682-1688.	2.0	5
23	Maintenance sorafenib in FLT3-ITD AML following allogeneic HCT favorably impacts relapse and overall survival. Bone Marrow Transplantation, 2019, 54, 1518-1520.	1.3	18
24	The MAGIC algorithm probability is a validated response biomarker of treatment of acute graft-versus-host disease. Blood Advances, 2019, 3, 4034-4042.	2.5	63
25	Computational analysis of continuous body temperature provides early discrimination of graft-versus-host disease in mice. Blood Advances, 2019, 3, 3977-3981.	2.5	5
26	Cognitive Function and Quality of Life in Vorinostat-Treated Patients after Matched Unrelated Donor Myeloablative Conditioning Hematopoietic Cell Transplantation. Biology of Blood and Marrow Transplantation, 2019, 25, 343-353.	2.0	12
27	miR-142 controls metabolic reprogramming that regulates dendritic cell activation. Journal of Clinical Investigation, 2019, 129, 2029-2042.	3.9	41
28	Mitochondrial Complex II in Intestinal Epithelial Cells Is a Critical Metabolic Checkpoint That Regulates Severity of Gastrointestinal Graft-Versus-Host Disease. Blood, 2019, 134, 584-584.	0.6	1
29	Rational Modification of Intestinal Microbiome and Metabolites after Allogeneic Hematopoietic Stem Cell Transplantation with Resistant Starch: A Pilot Study. Blood, 2019, 134, 3276-3276.	0.6	1
30	NLRP6 in Donor T Cells Separately Regulates CD4 and CD8 Mediated Graft-Versus-Host Disease in Experimental Murine BMT. Blood, 2019, 134, 1926-1926.	0.6	0
31	The MAGIC Algorithm Probability (MAP): A Novel Laboratory Biomarker for the Response to Treatment of Acute Graft-Versus-Host Disease. Blood, 2019, 134, 367-367.	0.6	0
32	The Microbiome and Hematopoietic Cell Transplantation: Past, Present, and Future. Biology of Blood and Marrow Transplantation, 2018, 24, 1322-1340.	2.0	85
33	$\hat{l}\pm 1$ -Antitrypsin infusion for treatment of steroid-resistant acute graft-versus-host disease. Blood, 2018, 131, 1372-1379.	0.6	81
34	Sorafenib promotes graft-versus-leukemia activity in mice and humans through IL-15 production in FLT3-ITD-mutant leukemia cells. Nature Medicine, 2018, 24, 282-291.	15.2	216
35	MAGIC biomarkers predict long-term outcomes for steroid-resistant acute GVHD. Blood, 2018, 131, 2846-2855.	0.6	140
36	Microbial metabolites and graft versus host disease. American Journal of Transplantation, 2018, 18, 23-29.	2.6	40

#	Article	IF	Citations
37	Graft-Versus-Host Disease and Graft-Versus-Leukemia Responses. , 2018, , 1650-1668.e10.		1
38	Editorial: Non-coding RNAs and Graft versus Host Disease. Frontiers in Immunology, 2018, 9, 2713.	2.2	2
39	SAG/RBX2 E3 Ubiquitin Ligase Differentially Regulates Inflammatory Responses of Myeloid Cell Subsets. Frontiers in Immunology, 2018, 9, 2882.	2.2	11
40	Microbes and Their Metabolites Correlate with Hematopoietic Stem Cell Transplantation Outcomes?. Biology of Blood and Marrow Transplantation, 2018, 24, e7-e8.	2.0	1
41	Mitochondrial Deacetylase SIRT3 Plays an Important Role in Donor T Cell Responses after Experimental Allogeneic Hematopoietic Transplantation. Journal of Immunology, 2018, 201, 3443-3455.	0.4	22
42	Murine Models of Steroid Refractory Graft-versus-Host Disease. Scientific Reports, 2018, 8, 12475.	1.6	13
43	Microbial metabolite sensor GPR43 controls severity of experimental GVHD. Nature Communications, 2018, 9, 3674.	5.8	102
44	Non-Coding RNA Mediated Regulation of Allogeneic T Cell Responses After Hematopoietic Transplantation. Frontiers in Immunology, 2018, 9, 1110.	2.2	12
45	Survival signal REG3α prevents crypt apoptosis to control acute gastrointestinal graft-versus-host disease. Journal of Clinical Investigation, 2018, 128, 4970-4979.	3.9	94
46	Tissue tolerance: a distinct concept to control acute GVHD severity. Blood, 2017, 129, 1747-1752.	0.6	56
47	GVHD: ferocity affects feracitas. Blood, 2017, 129, 1068-1069.	0.6	0
48	Regulating Damage from Sterile Inflammation: A Tale of Two Tolerances. Trends in Immunology, 2017, 38, 231-235.	2.9	10
49	Vorinostat plus tacrolimus/methotrexate to prevent GVHD after myeloablative conditioning, unrelated donor HCT. Blood, 2017, 130, 1760-1767.	0.6	57
50	STAT3 Expression in Host Myeloid Cells Controls Graft-versus-Host Disease Severity. Biology of Blood and Marrow Transplantation, 2017, 23, 1622-1630.	2.0	7
51	A Critical Analysis of the Role of SNARE Protein SEC22B in Antigen Cross-Presentation. Cell Reports, 2017, 19, 2645-2656.	2.9	42
52	Genome-Wide STAT3 Binding Analysis after Histone Deacetylase Inhibition Reveals Novel Target Genes in Dendritic Cells. Journal of Innate Immunity, 2017, 9, 126-144.	1.8	8
53	An early-biomarker algorithm predicts lethal graft-versus-host disease and survival. JCI Insight, 2017, 2, e89798.	2.3	166
54	IAPs protect host target tissues from graft-versus-host disease in mice. Blood Advances, 2017, 1, 1517-1532.	2.5	15

#	Article	IF	Citations
55	Siglec-G represses DAMP-mediated effects on T cells. JCI Insight, 2017, 2, .	2.3	37
56	Fibroblastic niches prime T cell alloimmunity through Delta-like Notch ligands. Journal of Clinical Investigation, 2017, 127, 1574-1588.	3.9	72
57	Altered homeostatic regulation of innate and adaptive immunity in lower gastrointestinal tract GVHD pathogenesis. Journal of Clinical Investigation, 2017, 127, 2441-2451.	3.9	37
58	Danger Signals and Graft-versus-host Disease: Current Understanding and Future Perspectives. Frontiers in Immunology, 2016, 7, 539.	2.2	85
59	Advances in understanding the pathogenesis of graftâ€versusâ€host disease. British Journal of Haematology, 2016, 173, 190-205.	1.2	67
60	SAG/Rbx2-Dependent Neddylation Regulates T-Cell Responses. American Journal of Pathology, 2016, 186, 2679-2691.	1.9	25
61	Combination Therapy for Graft-versus-Host Disease Prophylaxis with Etanercept and Extracorporeal Photopheresis: Results of a Phase II Clinical Trial. Biology of Blood and Marrow Transplantation, 2016, 22, 862-868.	2.0	40
62	Gut microbiome–derived metabolites modulate intestinal epithelial cell damage and mitigate graft-versus-host disease. Nature Immunology, 2016, 17, 505-513.	7.0	536
63	Reprint of: Acute Graft-versus-Host Disease: Novel Biological Insights. Biology of Blood and Marrow Transplantation, 2016, 22, S3-S8.	2.0	13
64	Acute Graft-versus-Host Disease: Novel Biological Insights. Biology of Blood and Marrow Transplantation, 2016, 22, 11-16.	2.0	92
65	Reducing Treatment-Related Mortality Did Not Improve Outcomes of Allogeneic Myeloablative Hematopoietic Cell Transplantation for High-Risk Multiple Myeloma: A University of Michigan Prospective Series. Biology of Blood and Marrow Transplantation, 2016, 22, 54-60.	2.0	12
66	FLT3 mutational status is an independent risk factor for adverse outcomes after allogeneic transplantation in AML. Bone Marrow Transplantation, 2016, 51, 511-520.	1.3	40
67	Histone deacetylase inhibition regulates inflammation and enhances Tregs after allogeneic hematopoietic cell transplantation in humans. Blood, 2015, 125, 815-819.	0.6	95
68	Lung parenchyma-derived IL-6 promotes IL-17A–dependent acute lung injury after allogeneic stem cell transplantation. Blood, 2015, 125, 2435-2444.	0.6	73
69	Mature T cell responses are controlled by microRNA-142. Journal of Clinical Investigation, 2015, 125, 2825-2840.	3.9	81
70	Host CD8α+Dendritic Cells May Be a Key Factor for Separating Graft-versus-Host Disease from Graft-versus-Leukemia. Biology of Blood and Marrow Transplantation, 2015, 21, 775-776.	2.0	6
71	BET bromodomain inhibition suppresses graft-versus-host disease after allogeneic bone marrow transplantation in mice. Blood, 2015, 125, 2724-2728.	0.6	41
72	The Microbiome and Graft Versus Host Disease. Current Stem Cell Reports, 2015, 1, 39-47.	0.7	14

#	Article	IF	CITATIONS
73	Ikaros deficiency in host hematopoietic cells separates GVL from GVHD after experimental allogeneic hematopoietic cell transplantation. Oncolmmunology, 2015, 4, e1016699.	2.1	8
74	Donor T Cells Intrinsic Responses to Damps Regulated By Siglec-G-CD24 Axis Mitigate Gvhd but Maintain GVL in Experimental BMT Model. Blood, 2015, 126, 229-229.	0.6	1
75	Genome-Wide Binding Studies of Acetyl-STAT3 Demonstrates a Novel Regulatory Pathway in Dendritic Cells. Blood, 2015, 126, 647-647.	0.6	0
76	The Role of Dendritic Cells in Graft-Versus-Tumor Effect. Frontiers in Immunology, 2014, 5, 66.	2,2	14
77	The Difficulty in Diagnosing Cord Colitis. Biology of Blood and Marrow Transplantation, 2014, 20, 906-907.	2.0	3
78	Vorinostat plus tacrolimus and mycophenolate to prevent graft-versus-host disease after related-donor reduced-intensity conditioning allogeneic haemopoietic stem-cell transplantation: a phase 1/2 trial. Lancet Oncology, The, 2014, 15, 87-95.	5.1	113
79	Participation in Clinical Research: Perspectives of Adult Patients and Parents of Pediatric Patients Undergoing Hematopoietic Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2014, 20, 1604-1611.	2.0	30
80	Current and emerging strategies for the prevention of graft-versus-host disease. Nature Reviews Clinical Oncology, 2014, 11, 536-547.	12.5	180
81	Etanercept plus Topical Corticosteroids as Initial Therapy for Grade One Acute Graft-Versus-Host Disease after Allogeneic Hematopoietic Cell Transplantation. Biology of Blood and Marrow Transplantation, 2014, 20, 1426-1434.	2.0	20
82	Engraftment Syndrome after Allogeneic Hematopoietic Cell Transplantation Predicts Poor Outcomes. Biology of Blood and Marrow Transplantation, 2014, 20, 1407-1417.	2.0	80
83	Siglec-G–CD24 axis controls the severity of graft-versus-host disease in mice. Blood, 2014, 123, 3512-3523.	0.6	76
84	ST2 as a Marker for Risk of Therapy-Resistant Graft-versus-Host Disease and Death. New England Journal of Medicine, 2013, 369, 529-539.	13.9	339
85	Mouse Models in Bone Marrow Transplantation and Adoptive Cellular Therapy. Seminars in Hematology, 2013, 50, 131-144.	1.8	10
86	The histone methyltransferase Ezh2 is a crucial epigenetic regulator of allogeneic T-cell responses mediating graft-versus-host disease. Blood, 2013, 122, 4119-4128.	0.6	54
87	Biology of Graft-versus-Host Responses: Recent Insights. Biology of Blood and Marrow Transplantation, 2013, 19, S10-S14.	2.0	47
88	Influence of Donor Microbiota on the Severity of Experimental Graft-versus-Host-Disease. Biology of Blood and Marrow Transplantation, 2013, 19, 164-168.	2.0	29
89	Intracellular sensors of immunity and allogeneic hematopoietic stem cell transplantation. , 2013, , 425-447.		6
90	Host-derived CD8+ dendritic cells are required for induction of optimal graft-versus-tumor responses after experimental allogeneic bone marrow transplantation. Blood, 2013, 121, 4231-4241.	0.6	34

#	Article	IF	Citations
91	Neddylation plays an important role in the regulation of murine and human dendritic cell function. Blood, 2013, 122, 2062-2073.	0.6	66
92	Allogeneic T cell responses are regulated by a specific miRNA-mRNA network. Journal of Clinical Investigation, 2013, 123, 4739-4754.	3.9	36
93	Targeting deacetylases to improve outcomes after allogeneic bone marrow transplantation. Transactions of the American Clinical and Climatological Association, 2013, 124, 152-62.	0.9	2
94	Donor- but not host-derived interleukin-10 contributes to the regulation of experimental graft-versus-host disease. Journal of Leukocyte Biology, 2012, 91, 667-675.	1.5	29
95	Alpha-1-antitrypsin monotherapy reduces graft-versus-host disease after experimental allogeneic bone marrow transplantation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 564-569.	3.3	125
96	Editorial: HDAC inhibition begets more MDSCs. Journal of Leukocyte Biology, 2012, 91, 679-681.	1.5	5
97	Tolerance without toxicity? $\hat{l}\pm 1$ -antitrypsin as a novel alternative to immunosuppression. Expert Review of Clinical Immunology, 2012, 8, 397-399.	1.3	9
98	Role of Cytokines in the Pathophysiology of Acute Graft-Versus-Host Disease (GVHD)– Are Serum/Plasma Cytokines Potential Biomarkers for Diagnosis of Acute GVHD Following Allogeneic Hematopoietic Cell Transplantation (Allo-HCT)?. Current Stem Cell Research and Therapy, 2012, 7, 229-239.	0.6	37
99	Induction of acute GVHD by sex-mismatched H-Y antigens in the absence of functional radiosensitive host hematopoietic–derived antigen-presenting cells. Blood, 2012, 119, 3844-3853.	0.6	86
100	Emerging Therapies in Hematopoietic Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2012, 18, S125-S131.	2.0	7
101	GVHD Prevention: An Ounce Is Better Than a Pound. Biology of Blood and Marrow Transplantation, 2012, 18, S17-S26.	2.0	10
102	Cellular Therapy for Hematology Malignancies: Allogeneic Hematopoietic Stem Transplantation, Graft-Versus-Host Disease, and Graft Versus Leukemia Effects., 2012,, 303-366.		1
103	Host Basophils Are Dispensable for Induction of Donor T Helper 2 Cell Differentiation and Severity of Experimental Graft-versus-Host Disease. Biology of Blood and Marrow Transplantation, 2011, 17, 1747-1753.	2.0	8
104	HDAC Inhibition and Graft Versus Host Disease. Molecular Medicine, 2011, 17, 404-416.	1.9	71
105	Regenerating islet-derived 3-alpha is a biomarker of gastrointestinal graft-versus-host disease. Blood, 2011, 118, 6702-6708.	0.6	277
106	Ikaros-Notch axis in host hematopoietic cells regulates experimental graft-versus-host disease. Blood, 2011, 118, 192-204.	0.6	94
107	Targeting of microRNA-142-3p in dendritic cells regulates endotoxin-induced mortality. Blood, 2011, 117, 6172-6183.	0.6	132
108	Donor Tregs suppress the good with the bad after allogeneic BMT. Leukemia Research, 2011, 35, 1541-1542.	0.4	1

#	Article	IF	Citations
109	Manipulating the Bioenergetics of Alloreactive T Cells Causes Their Selective Apoptosis and Arrests Graft-Versus-Host Disease. Science Translational Medicine, 2011, 3, 67ra8.	5.8	153
110	Interleukin-6 Modulates Graft-versus-Host Responses after Experimental Allogeneic Bone Marrow Transplantation. Clinical Cancer Research, 2011, 17, 77-88.	3.2	155
111	Immunization with host-type CD8α+ dendritic cells reduces experimental acute GVHD in an IL-10–dependent manner. Blood, 2010, 115, 724-735.	0.6	26
112	A Crucial Role for Host APCs in the Induction of Donor CD4+CD25+ Regulatory T Cell-Mediated Suppression of Experimental Graft-versus-Host Disease. Journal of Immunology, 2010, 185, 3866-3872.	0.4	47
113	Emerging drugs for acute graft-versus-host disease. Expert Opinion on Emerging Drugs, 2009, 14, 219-232.	1.0	5
114	Cutting Edge: Negative Regulation of Dendritic Cells through Acetylation of the Nonhistone Protein STAT-3. Journal of Immunology, 2009, 182, 5899-5903.	0.4	129
115	Graft-versus-host disease. Lancet, The, 2009, 373, 1550-1561.	6.3	2,093
116	A biomarker panel for acute graft-versus-host disease. Blood, 2009, 113, 273-278.	0.6	348
117	Combined Th2 cytokine deficiency in donor T cells aggravates experimental acute graft-vs-host disease. Experimental Hematology, 2008, 36, 988-996.	0.2	56
118	Differential susceptibility of C57BL/6NCr and B6.Cg-Ptprca mice to commensal bacteria after whole body irradiation in translational bone marrow transplant studies. Journal of Translational Medicine, 2008, 6, 10.	1.8	20
119	GVHD pathophysiology: is acute different from chronic?. Best Practice and Research in Clinical Haematology, 2008, 21, 101-117.	0.7	71
120	Mouse Models of Bone Marrow Transplantation. Biology of Blood and Marrow Transplantation, 2008, 14, 129-135.	2.0	98
121	Etanercept plus methylprednisolone as initial therapy for acute graft-versus-host disease. Blood, 2008, 111, 2470-2475.	0.6	183
122	Extracorporeal photopheresis reverses experimental graft-versus-host disease through regulatory T cells. Blood, 2008, 112, 1515-1521.	0.6	198
123	Histone deacetylase inhibition modulates indoleamine 2,3-dioxygenase–dependent DC functions and regulates experimental graft-versus-host disease in mice. Journal of Clinical Investigation, 2008, 118, 2562-73.	3.9	243
124	Pathophysiology of Acute Graft-versus-Host Disease. , 2008, , 563-588.		1
125	Histone Deacetylase Inhibitors: Novel Immunomodulators. Current Enzyme Inhibition, 2007, 3, 207-215.	0.3	2
126	A Novel Role for the Semaphorin Sema4D in the Induction of Allo-responses. Biology of Blood and Marrow Transplantation, 2007, 13, 1294.e1-1294.e11.	2.0	16

#	Article	IF	Citations
127	Pathophysiology of acute graft-versus-host disease: recent advances. Translational Research, 2007, 150, 197-214.	2.2	110
128	Blocking HDACs boosts regulatory T cells. Nature Medicine, 2007, 13, 1282-1284.	15.2	17
129	Lymphopenia-induced proliferation of donor T cells reduces their capacity for causing acute graft-versus-host disease. Experimental Hematology, 2007, 35, 274-286.	0.2	23
130	Benzodiazepine-423, an Inhibitor of Mitochondrial Respiration, Causes Selective Apoptosis of Activated Lymphocytes and Reverses Experimental GVHD While Preserving GVL Effects Blood, 2007, 110, 68-68.	0.6	4
131	Etanercept Plus Methylprednisolone as Initial Therapy for Acute GVHD Blood, 2007, 110, 39-39.	0.6	0
132	Pathophysiology of Graft-Versus-Host Disease. Seminars in Hematology, 2006, 43, 3-10.	1.8	358
133	Nephrotic syndrome associated with chronic graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplantation, 2006, 38, 351-357.	1.3	84
134	Critical role of host γδT cells in experimental acute graft-versus-host disease. Blood, 2005, 106, 749-755.	0.6	67
135	A crucial role for antigen-presenting cells and alloantigen expression in graft-versus-leukemia responses. Nature Medicine, 2005, 11, 1244-1249.	15.2	223
136	Histone Deacetylase Inhibitors Induce Immuno-Dominant Suppression of Dendritic Cells Blood, 2005, 106, 456-456.	0.6	1
137	Extracorporeal photo-chemotherapy for graft-versus-host disease. Haematologica, 2005, 90, 1013B.	1.7	0
138	Histone deacetylase inhibitor suberoylanilide hydroxamic acid reduces acute graft-versus-host disease and preserves graft-versus-leukemia effect. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3921-3926.	3.3	278
139	Host Dendritic Cells Alone Are Sufficient to Initiate Acute Graft-versus-Host Disease. Journal of Immunology, 2004, 172, 7393-7398.	0.4	225
140	Interleukin-18: recent advances. Current Opinion in Hematology, 2004, 11, 405-410.	1.2	129
141	Allo-Antigen Expression on Both APCS and Tumor Is Required To Elicit an Effective GVL Response after Experimental Allogeneic BMT Blood, 2004, 104, 595-595.	0.6	1
142	Host \hat{l}^3d T cells Exacerbate Experimental Acute Graft-Versus-Host Disease through Activation of Host Antigen Presenting Cells Blood, 2004, 104, 3045-3045.	0.6	0
143	Role of CXCR3-induced donor T-cell migration in acute GVHD. Experimental Hematology, 2003, 31, 897-902.	0.2	152
144	Role of interleukin-18 in acute graft-vs-host disease. Translational Research, 2003, 141, 365-371.	2.4	37

#	Article	IF	CITATIONS
145	Pathophysiology of acute graft-versus-host disease. Hematological Oncology, 2003, 21, 149-161.	0.8	145
146	Immunobiology of acute graft-versus-host disease. Blood Reviews, 2003, 17, 187-194.	2.8	234
147	Treatment of chronic graft-versus-host disease with anti-CD20 chimeric monoclonal antibody. Biology of Blood and Marrow Transplantation, 2003, 9, 505-511.	2.0	204
148	Pretreatment of donors with interleukin-18 attenuates acute graft-versus-host disease via STAT6 and preserves graft-versus-leukemia effects. Blood, 2003, 101, 2877-2885.	0.6	65
149	Early changes in gene expression profiles of hepatic GVHD uncovered by oligonucleotide microarrays. Blood, 2003, 102, 763-771.	0.6	74
150	Impaired thymic negative selection causes autoimmune graft-versus-host disease. Blood, 2003, 102, 429-435.	0.6	97
151	Flt3 ligand therapy for recipients of allogeneic bone marrow transplants expands host CD8α+ dendritic cells and reduces experimental acute graft-versus-host disease. Blood, 2002, 99, 1825-1832.	0.6	72
152	Interleukin 18 preserves a perforin-dependent graft-versus-leukemia effect after allogeneic bone marrow transplantation. Blood, 2002, 100, 3429-3431.	0.6	37
153	Acute graft-versus-host disease does not require alloantigen expression on host epithelium. Nature Medicine, 2002, 8, 575-581.	15.2	495
154	Enhanced allostimulatory activity of host antigen-presenting cells in old mice intensifies acute graft-versus-host disease. Journal of Clinical Investigation, 2002, 109, 1249-1256.	3.9	76
155	Interleukin-18 Regulates Acute Graft-Versus-Host Disease by Enhancing Fas-mediated Donor T Cell Apoptosis. Journal of Experimental Medicine, 2001, 194, 1433-1440.	4.2	161
156	Pathobiology of graft-versus-host disease. , 0, , 297-310.		0