
Zixing Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10838018/publications.pdf Version: 2024-02-01

ZIXING WANG

#	Article	IF	CITATIONS
1	Cowpea-structured PVDF/ZnO nanofibers based flexible self-powered piezoelectric bending motion sensor towards remote control of gestures. Nano Energy, 2019, 55, 516-525.	16.0	331
2	Unraveling and Regulating Self-Discharge Behavior of Ti ₃ C ₂ T _{<i>x</i>} MXene-Based Supercapacitors. ACS Nano, 2020, 14, 4916-4924.	14.6	203
3	A linear-to-rotary hybrid nanogenerator for high-performance wearable biomechanical energy harvesting. Nano Energy, 2020, 67, 104235.	16.0	172
4	Epidermis-Inspired Ultrathin 3D Cellular Sensor Array for Self-Powered Biomedical Monitoring. ACS Applied Materials & Interfaces, 2018, 10, 41070-41075.	8.0	136
5	High-voltage asymmetric MXene-based on-chip micro-supercapacitors. Nano Energy, 2020, 74, 104928.	16.0	96
6	Establishing highly-efficient surface faradaic reaction in flower-like NiCo2O4 nano-/micro-structures for next-generation supercapacitors. Electrochimica Acta, 2019, 307, 302-309.	5.2	95
7	Extremely low self-discharge solid-state supercapacitors <i>via</i> the confinement effect of ion transfer. Journal of Materials Chemistry A, 2019, 7, 8633-8640.	10.3	88
8	Highly microporous carbon with nitrogen-doping derived from natural biowaste for high-performance flexible solid-state supercapacitor. Journal of Colloid and Interface Science, 2019, 548, 322-332.	9.4	80
9	Scalable, and low-cost treating-cutting-coating manufacture platform for MXene-based on-chip micro-supercapacitors. Nano Energy, 2020, 69, 104431.	16.0	78
10	Strong Lewis Acid–Base and Weak Hydrogen Bond Synergistically Enhancing Ionic Conductivity of Poly(ethylene oxide)@SiO ₂ Electrolytes for a High Rate Capability Li-Metal Battery. ACS Applied Materials & Interfaces, 2020, 12, 10341-10349.	8.0	77
11	An ultrathin robust polymer membrane for wearable solid-state electrochemical energy storage. Nano Energy, 2020, 76, 105179.	16.0	70
12	Electrochemically building three-dimensional supramolecular polymer hydrogel for flexible solid-state micro-supercapacitors. Electrochimica Acta, 2019, 301, 136-144.	5.2	69
13	Ti ₃ C ₂ T _{<i>x</i>/sub> MXene-Based Micro-Supercapacitors with Ultrahigh Volumetric Energy Density for All-in-One Si-Electronics. ACS Nano, 2022, 16, 3776-3784.}	14.6	60
14	Airâ€Stable Conductive Polymer Ink for Printed Wearable Microâ€Supercapacitors. Small, 2021, 17, e2100956.	10.0	51
15	Chainâ€Elongated Ionic Liquid Electrolytes for Low Selfâ€Discharge Allâ€Solidâ€State Supercapacitors at High Temperature. ChemSusChem, 2021, 14, 3895-3903.	6.8	17
16	Stabilizing SEI by cyclic ethers toward enhanced K+ storage in graphite. Journal of Energy Chemistry, 2022, 71, 344-350.	12.9	9
17	Solving Gravimetric-Volumetric Capacitive Paradox of 2D Materials through Dual-Functional Chemical Bonding-Induced Self-Constructing Graphene-MXene Monoliths. ACS Applied Materials & Interfaces, 2021, 13, 6339-6348.	8.0	8
18	Allâ€Sprayable Hierarchically Nanostructured Conducting Polymer Hydrogel for Massively Manufactured Flexible Allâ€Solidâ€State Supercapacitor. Energy Technology, 2019, 7, 1801109.	3.8	6