
Bernd Fakler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1083778/publications.pdf Version: 2024-02-01

REDNIN FARLED

#	Article	IF	CITATIONS
1	Building of AMPAâ€ŧype glutamate receptors in the endoplasmic reticulum and its implication for excitatory neurotransmission. Journal of Physiology, 2021, 599, 2639-2653.	2.9	12
2	The molecular appearance of native TRPM7 channel complexes identified by high-resolution proteomics. ELife, 2021, 10, .	6.0	30
3	Deorphanizing FAM19A proteins as pan-neurexin ligands with an unusual biosynthetic binding mechanism. Journal of Cell Biology, 2020, 219, .	5.2	26
4	An ER Assembly Line of AMPA-Receptors Controls Excitatory Neurotransmission and Its Plasticity. Neuron, 2019, 104, 680-692.e9.	8.1	59
5	Complex formation of APP with GABAB receptors links axonal trafficking to amyloidogenic processing. Nature Communications, 2019, 10, 1331.	12.8	92
6	A pharmacological master key mechanism that unlocks the selectivity filter gate in K ⁺ channels. Science, 2019, 363, 875-880.	12.6	91
7	High-Resolution Complexome Profiling by Cryoslicing BN-MS Analysis. Journal of Visualized Experiments, 2019, , .	0.3	5
8	Folding unpredicted. Science, 2019, 366, 1194-1195.	12.6	3
9	KCTD12 Auxiliary Proteins Modulate Kinetics of GABA _B Receptor-Mediated Inhibition in Cholecystokinin-Containing Interneurons. Cerebral Cortex, 2017, 27, bhw090.	2.9	19
10	Carbonic anhydrase-related protein CA10 is an evolutionarily conserved pan-neurexin ligand. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1253-E1262.	7.1	81
11	Ionotropic AMPA-type glutamate and metabotropic GABAB receptors: determining cellular physiology by proteomes. Current Opinion in Neurobiology, 2017, 45, 16-23.	4.2	21
12	Identification of Cav2–PKCβ and Cav2–NOS1 complexes as entities for ultrafast electrochemical coupling. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5707-5712.	7.1	4
13	Neuroplastin and Basigin Are Essential Auxiliary Subunits of Plasma Membrane Ca2+-ATPases and Key Regulators of Ca2+ Clearance. Neuron, 2017, 96, 827-838.e9.	8.1	73
14	Heteromeric channels formed by <scp>TRPC</scp> 1, <scp>TRPC</scp> 4 and <scp>TRPC</scp> 5 define hippocampal synaptic transmission and working memory. EMBO Journal, 2017, 36, 2770-2789.	7.8	88
15	AMPA-receptor specific biogenesis complexes control synaptic transmission and intellectual ability. Nature Communications, 2017, 8, 15910.	12.8	77
16	Cryo-slicing Blue Native-Mass Spectrometry (csBN-MS), a Novel Technology for High Resolution Complexome Profiling. Molecular and Cellular Proteomics, 2016, 15, 669-681.	3.8	58
17	Modular composition and dynamics of native GABAB receptors identified by high-resolution proteomics. Nature Neuroscience, 2016, 19, 233-242.	14.8	120
18	Membrane palmitoylated protein 2 is a synaptic scaffold protein required for synaptic SK2-containing channel function. ELife, 2016, 5, .	6.0	17

Bernd Fakler

#	Article	IF	CITATIONS
19	Inhibitory and excitatory axon terminals share a common nano-architecture of their Cav2.1 (P/Q-type) Ca2+ channels. Frontiers in Cellular Neuroscience, 2015, 9, 315.	3.7	33
20	Cornichon2 Dictates the Time Course of Excitatory Transmission at Individual Hippocampal Synapses. Neuron, 2014, 82, 848-858.	8.1	50
21	More Than a Pore: Ion Channel Signaling Complexes. Journal of Neuroscience, 2014, 34, 15159-15169.	3.6	62
22	Regional Diversity and Developmental Dynamics of the AMPA-Receptor Proteome in the Mammalian Brain. Neuron, 2014, 84, 41-54.	8.1	224
23	Auxiliary GABAB Receptor Subunits Uncouple G Protein βγ Subunits from Effector Channels to Induce Desensitization. Neuron, 2014, 82, 1032-1044.	8.1	92
24	Ligand-Gating by Ca ²⁺ Is Rate Limiting for Physiological Operation of BK _{Ca} Channels. Journal of Neuroscience, 2013, 33, 7358-7367.	3.6	29
25	Up-regulation of GABAB Receptor Signaling by Constitutive Assembly with the K+ Channel Tetramerization Domain-containing Protein 12 (KCTD12). Journal of Biological Chemistry, 2013, 288, 24848-24856.	3.4	33
26	Extending the Dynamic Range of Label-free Mass Spectrometric Quantification of Affinity Purifications. Molecular and Cellular Proteomics, 2012, 11, M111.007955.	3.8	49
27	Opposite Effects of KCTD Subunit Domains on GABAB Receptor-mediated Desensitization. Journal of Biological Chemistry, 2012, 287, 39869-39877.	3.4	46
28	High-Resolution Proteomics Unravel Architecture and Molecular Diversity of Native AMPA Receptor Complexes. Neuron, 2012, 74, 621-633.	8.1	389
29	AMPA Receptors Commandeer an Ancient Cargo Exporter for Use as an Auxiliary Subunit for Signaling. PLoS ONE, 2012, 7, e30681.	2.5	34
30	Ion channels and their molecular environments – Glimpses and insights from functional proteomics. Seminars in Cell and Developmental Biology, 2011, 22, 132-144.	5.0	28
31	Distribution of the auxiliary GABA _B receptor subunits KCTD8, 12, 12b, and 16 in the mouse brain. Journal of Comparative Neurology, 2011, 519, 1435-1454.	1.6	71
32	Distribution of the auxiliary GABAB receptor subunits KCTD8, 12, 12b, and 16 in the mouse brain. Journal of Comparative Neurology, 2011, 519, spc1-spc1.	1.6	0
33	Native GABAB receptors are heteromultimers with a family of auxiliary subunits. Nature, 2010, 465, 231-235.	27.8	286
34	Ca ²⁺ -Activated K ⁺ Channels: From Protein Complexes to Function. Physiological Reviews, 2010, 90, 1437-1459.	28.8	225
35	Quantitative proteomics of the Cav2 channel nano-environments in the mammalian brain. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14950-14957.	7.1	274
36	Functional Proteomics Identify Cornichon Proteins as Auxiliary Subunits of AMPA Receptors. Science, 2009, 323, 1313-1319.	12.6	340

Bernd Fakler

#	Article	IF	CITATIONS
37	Association with the Auxiliary Subunit PEX5R/Trip8b Controls Responsiveness of HCN Channels to cAMP and Adrenergic Stimulation. Neuron, 2009, 62, 814-825.	8.1	119
38	Control of KCa Channels by Calcium Nano/Microdomains. Neuron, 2008, 59, 873-881.	8.1	312
39	Repolarizing Responses of BK _{Ca} –Cav Complexes Are Distinctly Shaped by Their Cav Subunits. Journal of Neuroscience, 2008, 28, 8238-8245.	3.6	69
40	NMR Analysis of KChIP4a Reveals Structural Basis for Control of Surface Expression of Kv4 Channel Complexes. Journal of Biological Chemistry, 2008, 283, 18937-18946.	3.4	19
41	Profiling the Phospho-status of the BKCa Channel α Subunit in Rat Brain Reveals Unexpected Patterns and Complexity. Molecular and Cellular Proteomics, 2008, 7, 2188-2198.	3.8	79
42	Organization and Regulation of Small Conductance Ca2+-activated K+ Channel Multiprotein Complexes. Journal of Neuroscience, 2007, 27, 2369-2376.	3.6	140
43	BKCa-Cav channel complexes mediate rapid and localized Ca2+-activated K+ signaling. E-Neuroforum, 2007, 13, 27-30.	0.1	2
44	BKCa-Cav Channel Complexes Mediate Rapid and Localized Ca2+-Activated K+ Signaling. Science, 2006, 314, 615-620.	12.6	327
45	The Epilepsy-Linked Lgi1 Protein Assembles into Presynaptic Kv1 Channels and Inhibits Inactivation by Kvl²1. Neuron, 2006, 49, 697-706.	8.1	276
46	The Role of BKCa Channels in Electrical Signal Encoding in the Mammalian Auditory Periphery. Journal of Neuroscience, 2006, 26, 6181-6189.	3.6	75
47	Ca2+-independent activation of BKCachannels at negative potentials in mammalian inner hair cells. Journal of Physiology, 2005, 569, 137-151.	2.9	45
48	Protein Kinase CK2 Is Coassembled with Small Conductance Ca2+-Activated K+ Channels and Regulates Channel Gating. Neuron, 2004, 43, 847-858.	8.1	176
49	A Helical Region in the C Terminus of Small-conductance Ca2+-activated K+ Channels Controls Assembly with Apo-calmodulin. Journal of Biological Chemistry, 2002, 277, 4558-4564.	3.4	40
50	Memantine Inhibits Efferent Cholinergic Transmission in the Cochlea by Blocking Nicotinic Acetylcholine Receptors of Outer Hair Cells. Molecular Pharmacology, 2001, 60, 183-189.	2.3	39
51	Control of Electrical Activity in Central Neurons by Modulating the Gating of Small Conductance Ca2+-activated K+ Channels. Journal of Biological Chemistry, 2001, 276, 9762-9769.	3.4	207
52	NMR Structure of the "Ball-and-chain―Domain of KCNMB2, the β2-Subunit of Large Conductance Ca2+- and Voltage-activated Potassium Channels. Journal of Biological Chemistry, 2001, 276, 42116-42121.	3.4	62
53	Gating of Ca2+-Activated K+ Channels Controls Fast Inhibitory Synaptic Transmission at Auditory Outer Hair Cells. Neuron, 2000, 26, 595-601.	8.1	232
54	Domains Responsible for Constitutive and Ca ²⁺ -Dependent Interactions between Calmodulin and Small Conductance Ca ²⁺ -Activated Potassium Channels. Journal of Neuroscience, 1999, 19, 8830-8838.	3.6	210