Christopher H Mody

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1083640/publications.pdf

Version: 2024-02-01

92 papers 4,310 citations

35 h-index 62 g-index

93 all docs 93 docs citations

93 times ranked 4196 citing authors

#	Article	IF	Citations
1	<i>Staphylococcus aureus</i> in Non–Cystic Fibrosis Bronchiectasis: Prevalence and Genomic Basis of High Inoculum β-Lactam Resistance. Annals of the American Thoracic Society, 2022, 19, 1285-1293.	3.2	2
2	Natural killer cells kill extracellular Pseudomonas aeruginosa using contact-dependent release of granzymes B and H. PLoS Pathogens, 2022, 18, e1010325.	4.7	13
3	Immune Cell Degranulation in Fungal Host Defence. Journal of Fungi (Basel, Switzerland), 2021, 7, 484.	3.5	6
4	Phagosomal F-Actin Retention by Cryptococcus gattii Induces Dendritic Cell Immunoparalysis. MBio, 2020, 11, .	4.1	12
5	A longitudinal characterization of the Non-Cystic Fibrosis Bronchiectasis airway microbiome. Scientific Reports, 2019, 9, 6871.	3.3	36
6	Natural killer cells kill Burkholderia cepacia complex via a contact-dependent and cytolytic mechanism. International Immunology, 2019, 31, 385-396.	4.0	7
7	Microbial killing by NK cells. Journal of Leukocyte Biology, 2019, 105, 1285-1296.	3.3	13
8	Identification of the fungal ligand triggering cytotoxic PRR-mediated NK cell killing of Cryptococcus and Candida. Nature Communications, 2018, 9, 751.	12.8	52
9	Leukotriene B4-Mediated Neutrophil Recruitment Causes Pulmonary Capillaritis during Lethal Fungal Sepsis. Cell Host and Microbe, 2018, 23, 121-133.e4.	11.0	69
10	Epidemiology and trends of cryptococcosis in the United States from 2000 to 2007: A population-based study. International Journal of STD and AIDS, 2018, 29, 453-460.	1.1	23
11	Granule-Dependent NK Cell Killing of Cryptococcus Requires Kinesin to Reposition the Cytolytic Machinery for Directed Cytotoxicity. Cell Reports, 2018, 24, 3017-3032.	6.4	15
12	\hat{I}^21 Integrins Are Required To Mediate NK Cell Killing of <i>Cryptococcus neoformans</i> Immunology, 2018, 201, 2369-2376.	0.8	12
13	Epidemiology and natural history of (i) Pseudomonas aeruginosa (i) airway infections in non-cystic fibrosis bronchiectasis. ERJ Open Research, 2018, 4, 00162-2017.	2.6	14
14	Effectiveness of a standardized electronic admission order set for acute exacerbation of chronic obstructive pulmonary disease. BMC Pulmonary Medicine, 2018, 18, 93.	2.0	12
15	Herpes Simplex Virus 1 UL24 Abrogates the DNA Sensing Signal Pathway by Inhibiting NF-κB Activation. Journal of Virology, 2017, 91, .	3.4	95
16	Cryptococcal Lung Infections. Clinics in Chest Medicine, 2017, 38, 451-464.	2.1	30
17	A Series of Transbronchial Removal of Intracavitary Pulmonary Aspergilloma. Annals of Thoracic Surgery, 2017, 103, 945-950.	1.3	13
18	Granule-Dependent Natural Killer Cell Cytotoxicity to Fungal Pathogens. Frontiers in Immunology, 2017, 7, 692.	4.8	15

#	Article	IF	CITATIONS
19	Fungal Infection in the Brain: What We Learned from Intravital Imaging. Frontiers in Immunology, 2016, 7, 292.	4.8	25
20	Ras-related C3 Botulinum Toxin Substrate (Rac) and Src Family Kinases (SFK) Are Proximal and Essential for Phosphatidylinositol 3-Kinase (PI3K) Activation in Natural Killer (NK) Cell-mediated Direct Cytotoxicity against Cryptococcus neoformans. Journal of Biological Chemistry, 2016, 291, 6912-6922.	3.4	23
21	Mechanisms by Which Interleukin-12 Corrects Defective NK Cell Anticryptococcal Activity in HIV-Infected Patients. MBio, 2016, 7 , .	4.1	7
22	NKp46 Is an NK Cell Fungicidal Pattern Recognition Receptor. Trends in Microbiology, 2016, 24, 929-931.	7.7	5
23	TNFα Augments Cytokine-Induced NK Cell IFNγ Production through TNFR2. Journal of Innate Immunity, 2016, 8, 617-629.	3.8	37
24	<i>Cryptococcus gattii</i> Capsule Blocks Surface Recognition Required for Dendritic Cell Maturation Independent of Internalization and Antigen Processing. Journal of Immunology, 2016, 196, 1259-1271.	0.8	31
25	Twenty-Five-Year Outbreak of Pseudomonas aeruginosa Infecting Individuals with Cystic Fibrosis: Identification of the Prairie Epidemic Strain. Journal of Clinical Microbiology, 2014, 52, 1127-1135.	3.9	49
26	Invariant natural killer T cells act as an extravascular cytotoxic barrier for joint-invading Lyme $\langle i \rangle$ Borrelia $\langle i \rangle$. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13936-13941.	7.1	54
27	The NK Receptor NKp30 Mediates Direct Fungal Recognition and Killing and Is Diminished in NK Cells from HIV-Infected Patients. Cell Host and Microbe, 2013, 14, 387-397.	11.0	98
28	An Acidic Microenvironment Increases NK Cell Killing of Cryptococcus neoformans and Cryptococcus gattii by Enhancing Perforin Degranulation. PLoS Pathogens, 2013, 9, e1003439.	4.7	32
29	Requirement and Redundancy of the Src Family Kinases Fyn and Lyn in Perforin-Dependent Killing of Cryptococcus neoformans by NK Cells. Infection and Immunity, 2013, 81, 3912-3922.	2.2	26
30	<i>Cryptococcus gattii</i> Is Killed by Dendritic Cells, but Evades Adaptive Immunity by Failing To Induce Dendritic Cell Maturation. Journal of Immunology, 2013, 191, 249-261.	0.8	51
31	Bronchoscopic Removal of a Large Intracavitary Pulmonary Aspergilloma. Chest, 2013, 143, 238-241.	0.8	10
32	Myxoma Virus Infection Promotes NK Lysis of Malignant Gliomas In Vitro and In Vivo. PLoS ONE, 2013, 8, e66825.	2.5	46
33	Cryptococcus gattii pneumonia. Cmaj, 2012, 184, 1387-1390.	2.0	16
34	Real-time <i>in vivo</i> imaging of fungal migration to the central nervous system. Cellular Microbiology, 2012, 14, 1819-1827.	2.1	27
35	B2M., 2012,, 281-281.		0
36	Management of fungal lung disease in the immunocompromised. Therapeutic Advances in Respiratory Disease, 2011, 5, 305-324.	2.6	3

#	Article	IF	CITATIONS
37	An Official American Thoracic Society Statement: Treatment of Fungal Infections in Adult Pulmonary and Critical Care Patients. American Journal of Respiratory and Critical Care Medicine, 2011, 183, 96-128.	5.6	494
38	Immunotherapy in gliomas: limitations and potential of natural killer (NK) cell therapy. Trends in Molecular Medicine, 2011, 17, 433-441.	6.7	35
39	Membrane CD14, but not soluble CD14, is used by exoenzyme S from <i>P. aeruginosa</i> to signal proinflammatory cytokine production. Journal of Leukocyte Biology, 2011, 90, 189-198.	3.3	5
40	Direct Microbicidal Activity of Cytotoxic T-Lymphocytes. Journal of Biomedicine and Biotechnology, 2010, 1-9.	3.0	27
41	Granulysin Production and Anticryptococcal Activity Is Dependent upon a Far Upstream Enhancer That Binds STAT5 in Human Peripheral Blood CD4+T Cells. Journal of Immunology, 2010, 185, 5074-5081.	0.8	8
42	Cryptococcus. Proceedings of the American Thoracic Society, 2010, 7, 186-196.	3.5	103
43	Real-time imaging of trapping and urease-dependent transmigration of Cryptococcus neoformans in mouse brain. Journal of Clinical Investigation, 2010, 120, 1683-1693.	8.2	179
44	<i>Cryptococcus neoformans</i> Directly Stimulates Perforin Production and Rearms NK Cells for Enhanced Anticryptococcal Microbicidal Activity. Infection and Immunity, 2009, 77, 2436-2446.	2.2	47
45	In contrast to anti-tumor activity, YT cell and primary NK cell cytotoxicity for Cryptococcus neoformans bypasses LFA-1. International Immunology, 2009, 21, 423-432.	4.0	22
46	Cryptococcosis: An Emerging Respiratory Mycosis. Clinics in Chest Medicine, 2009, 30, 253-264.	2.1	52
47	Late Expression of Granulysin by Microbicidal CD4+ T Cells Requires PI3K- and STAT5-Dependent Expression of IL-2RÎ ² That Is Defective in HIV-Infected Patients. Journal of Immunology, 2008, 180, 7221-7229.	0.8	25
48	Pleural Mesothelial Cells Express Both BLT2 and PPARα and Mount an Integrated Response to Pleural Leukotriene B4. Journal of Immunology, 2008, 181, 7292-7299.	0.8	15
49	Microbial Products Activate Monocytic Cells through Detergent-Resistant Membrane Microdomains. American Journal of Respiratory Cell and Molecular Biology, 2008, 39, 657-665.	2.9	11
50	The Lung Responds to Zymosan in a Unique Manner Independent of Toll-Like Receptors, Complement, and Dectin-1. American Journal of Respiratory Cell and Molecular Biology, 2008, 38, 227-238.	2.9	24
51	Perforin-Dependent Cryptococcal Microbicidal Activity in NK Cells Requires PI3K-Dependent ERK1/2 Signaling. Journal of Immunology, 2007, 178, 6456-6464.	0.8	46
52	Cytotoxic CD4+ T cells use granulysin to kill Cryptococcus neoformans, and activation of this pathway is defective in HIV patients. Blood, 2007, 109, 2049-2057.	1.4	79
53	Elevated expression of prostaglandin receptor and increased release of prostaglandin E2maintain the survival of CD45RO+T cells in the inflamed human pleural space. Immunology, 2007, 121, 427-436.	4.4	9
54	Antigen and Memory CD8 T Cells: Were They Both Right?. Allergy, Asthma and Clinical Immunology, 2007, 03, 37.	2.0	0

#	Article	IF	CITATIONS
55	Other Cells: The role of non-neutrophilic granulocytes, NK and NKT cells in fungal immunology. , 2007, , 99-130.		O
56	Contemplating the murine test tube: lessons from natural killer cells and Cryptococcus neoformans. FEMS Yeast Research, 2006, 6, 543-557.	2.3	4
57	NK Cells Use Perforin Rather than Granulysin for Anticryptococcal Activity. Journal of Immunology, 2004, 173, 3357-3365.	0.8	100
58	Different Domains of <i>Pseudomonas aeruginosa</i> Exoenzyme S Activate Distinct TLRs. Journal of Immunology, 2004, 173, 2031-2040.	0.8	72
59	LTB4 is present in exudative pleural effusions and contributes actively to neutrophil recruitment in the inflamed pleural space. Clinical and Experimental Immunology, 2004, 135, 519-527.	2.6	40
60	Biologically Active Intercellular Adhesion Molecule-1 Is Shed as Dimers by a Regulated Mechanism in the Inflamed Pleural Space. American Journal of Respiratory and Critical Care Medicine, 2003, 167, 1131-1138.	5.6	37
61	CD8 T Cell-Mediated Killing of <i>Cryptococcus neoformans</i> Requires Granulysin and Is Dependent on CD4 T Cells and IL-15. Journal of Immunology, 2002, 169, 5787-5795.	0.8	142
62	Simple Construction of a Subcutaneous Catheter for Treatment of Severe Subcutaneous Emphysema. Chest, 2002, 121, 647-649.	0.8	70
63	Primary Dendritic Cells Phagocytose Cryptococcus neoformans via Mannose Receptors and FcÎ ³ Receptor II for Presentation to T Lymphocytes. Infection and Immunity, 2002, 70, 5972-5981.	2.2	126
64	Exoenzyme S from Pseudomonas aeruginosa induces apoptosis in T lymphocytes. Journal of Leukocyte Biology, 2000, 67, 808-816.	3.3	21
65	Accelerated replicative senescence of the peripheral immune system induced by HIV infection. Aids, 2000, 14, 771-780.	2.2	75
66	Pseudomonas aeruginosa Exoenzyme S Induces Transcriptional Expression of Proinflammatory Cytokines and Chemokines. Infection and Immunity, 2000, 68, 4811-4814.	2.2	44
67	Phagocytosis and Protein Processing Are Required for Presentation of Cryptococcus neoformans Mitogen to T Lymphocytes. Infection and Immunity, 2000, 68, 6147-6153.	2.2	23
68	Phagocytosis and Protein Processing Are Required for Presentation of Cryptococcus neoformans Mitogen to T Lymphocytes. Infection and Immunity, 2000, 68, 6147-6153.	2.2	1
69	Host Defence to Pulmonary Mycosis. Canadian Journal of Infectious Diseases & Medical Microbiology, 1999, 10, 147-155.	0.3	4
70	Interleukin-8 Induces Lymphocyte Chemotaxis into the Pleural Space. American Journal of Respiratory and Critical Care Medicine, 1999, 159, 1592-1599.	5.6	78
71	RecombinantPseudomonasexoenzyme S and exoenzyme S fromPseudomonas aeruginosaDG1 share the ability to stimulate T lymphocyte proliferation. Canadian Journal of Microbiology, 1999, 45, 607-611.	1.7	8
72	The Cell Wall and Membrane of <i>Cryptococcus neoformans </i> Possess a Mitogen for Human T Lymphocytes. Infection and Immunity, 1999, 67, 936-941.	2.2	29

#	Article	IF	CITATIONS
73	The Capsule of i>Cryptococcus neoformans i>Reduces T-Lymphocyte Proliferation by Reducing Phagocytosis, Which Can Be Restored with Anticapsular Antibody. Infection and Immunity, 1999, 67, 4620-4627.	2.2	68
74	Recombinant Pseudomonas exoenzyme S and exoenzyme S from Pseudomonas aeruginosa DG1 share the ability to stimulate T lymphocyte proliferation. Canadian Journal of Microbiology, 1999, 45, 607-11.	1.7	5
75	Interleukinâ€15 Induces Antimicrobial Activity after Release by∢i>Cryptococcus neoformansâ€Stimulated∢/i>Monocytes. Journal of Infectious Diseases, 1998, 178, 803-814.	4.0	36
76	<i>Pseudomonas aeruginosa</i> Exoenzyme S Is a Mitogen but Not a Superantigen for Human T Lymphocytes. Infection and Immunity, 1998, 66, 3072-3079.	2.2	17
77	Both CD4 + and CD8 + human lymphocytes are activated and proliferate in response to Cryptococcus neoformans. Immunology, 1997, 92, 194-200.	4.4	25
78	Proteins in the cell wall and membrane of Cryptococcus neoformans stimulate lymphocytes from both adults and fetal cord blood to proliferate. Infection and Immunity, 1996, 64, 4811-4819.	2.2	25
79	Pseudomonas aeruginosa exoenzyme S induces proliferation of human T lymphocytes. Infection and Immunity, 1995, 63, 1800-1805.	2.2	29
80	Un vivo depletion of murine CD8 positive T cells impairs survival during infection with a highly virulent strain of Cryptococcus neoformans. Mycopathologia, 1994, 125, 7-17.	3.1	38
81	CD8 cells play a critical role in delayed type hypersensitivity to intact Cryptococcus neoformans. Journal of Immunology, 1994, 152, 3970-9.	0.8	43
82	CD8 Cells Mediate Delayed Hypersensitivity Following Intrapulmonary Infection With Cryptococcus neoformans. Chest, 1993, 103, 118S.	0.8	5
83	Legionella pneumophila Replicates within Rat Alveolar Epithelial Cells. Journal of Infectious Diseases, 1993, 167, 1138-1145.	4.0	83
84	Effect of polysaccharide capsule and methods of preparation on human lymphocyte proliferation in response to Cryptococcus neoformans. Infection and Immunity, 1993, 61, 464-469.	2.2	52
85	Depletion of murine CD8+ T cells in vivo decreases pulmonary clearance of a moderately virulent strain of Cryptococcus neoformans. Translational Research, 1993, 121, 765-73.	2.3	36
86	Interferon- \hat{l}^3 Activates Rat Alveolar Macrophages for Anticryptococcal Activity. American Journal of Respiratory Cell and Molecular Biology, 1991, 5, 19-26.	2.9	97
87	A Mutation in the mip Gene Results in an Attenuation of Legionella pneumophila Virulence. Journal of Infectious Diseases, 1990, 162, 121-126.	4.0	169
88	Depletion of CD4+ (L3T4+) lymphocytes in vivo impairs murine host defense to Cryptococcus neoformans. Journal of Immunology, 1990, 144, 1472-7.	0.8	147
89	Treatment of Murine Cryptococcosis with Cyclosporin-A in Normal and Athymic Mice. The American Review of Respiratory Disease, 1989, 139, 8-13.	2.9	75
90	A Legionella pneumophila gene encoding a species-specific surface protein potentiates initiation of intracellular infection. Infection and Immunity, 1989, 57, 1255-1262.	2.2	255

#	ŧ	Article	IF	CITATIONS
9)1	Cyclosporin A inhibits the growth of Cryptococcus neoformans in a murine model. Infection and Immunity, 1988, 56, 7-12.	2.2	70
9	2	Cryptococcus Interactions with Innate Cytotoxic Lymphocytes., 0,, 417-427.		1